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Simple decision problem

Can we sit m researchers on m − 1 seats?
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Simple decision problem

Can we sit m researchers on m − 1 seats?

More precisely, we consider that

I Each researcher should have a seat

I Each seat cannot host more than a researcher
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Can we answer that question with a SAT solver?

I Each Boolean variable xij denote that research i is seated on
seat j

I “Each researcher should have a seat” translate to

m−1∨
j=1

xij

for each researcher i

I “Each seat cannot host more than a researcher”

¬xij ∨ ¬xkj

for each seat j , with 1 ≤ i < k ≤ m
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Can we answer that question with a SAT solver?

I Each Boolean variable xij denote that research i is seated on
seat j

I “Each researcher should have a seat” translate to

m−1∨
j=1

xij

for each researcher i

I “Each seat cannot host more than a researcher”

¬xij ∨ ¬xkj

for each seat j , with 1 ≤ i < k ≤ m

A modern CDCL SAT solver without specific counting features will
not answer that question in reasonable time for m > 20
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Can we answer that question with a PB solver?

I Each Boolean variable xij denote that research i is seated on
seat j

I “Each researcher should have a seat” translate to

m−1∑
j=1

xij ≥ 1

for each researcher i

I “Each seat cannot host more than a researcher”

m∑
i=1

xij ≤ 1

for each seat j
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Can we answer that question with a PB solver?

I Each Boolean variable xij denote that research i is seated on
seat j

I “Each researcher should have a seat” translate to
m−1∑
j=1

xij ≥ 1

for each researcher i
I “Each seat cannot host more than a researcher”

m∑
i=1

xij ≤ 1

for each seat j

A modern PB solver based on resolution will not answer that
question in reasonable time for m > 20
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Can we answer that question with a PB solver?

I Each Boolean variable xij denote that research i is seated on
seat j

I “Each researcher should have a seat” translate to
m−1∑
j=1

xij ≥ 1

for each researcher i
I “Each seat cannot host more than a researcher”

m∑
i=1

xij ≤ 1

for each seat j

A modern PB solver based on CuttingPlanes will answer that
question in a matter of seconds (until the input is too large)
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Principle of the human proof for m=3

(1) x11 + x12 ≥ 1

(2) x21 + x22 ≥ 1

(3) x31 + x32 ≥ 1

(4) x11 + x21 + x31 ≤ 1

(5) x12 + x22 + x32 ≤ 1
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Principle of the human proof for m=3

(1) x11 + x12 ≥ 1

(2) x21 + x22 ≥ 1

(3) x31 + x32 ≥ 1

(4) x11 + x21 + x31 ≥ 2

(5) x12 + x22 + x32 ≥ 2
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Principle of the human proof for m=3

(1) x11 + x12 ≥ 1

(2) x21 + x22 ≥ 1

(3) x31 + x32 ≥ 1

(4) x11 + x21 + x31 ≥ 2

(5) x12 + x22 + x32 ≥ 2

(1) + (2) + (3) + (4) = (6) x12 + x22 + x32 ≥ 2
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Principle of the human proof for m=3

(1) x11 + x12 ≥ 1

(2) x21 + x22 ≥ 1

(3) x31 + x32 ≥ 1

(4) x11 + x21 + x31 ≥ 2

(5) x12 + x22 + x32 ≥ 2

(1) + (2) + (3) + (4) = (6) x12 + x22 + x32 ≥ 2

(5) + (6) = (7) 3 ≥ 4
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Human vs Solver, Complexity Theory vs Modeling

I In practice, the way the constraints are expressed matters:
I easier to read, to understand the model for a human
I the number of constraints may be different ( m∗(m−1)

2 vs m− 1)
I the solver can apply new inference rules (e.g. Cutting Plane)

on higher abstraction constraints

I In theory, the input must be the same when talking about
complexity
I requires e.g. input in CNF for comparing resolution vs Cutting

Plane
I does not allow efficient encodings which rely on the addition of

new variables
I rely on “recovering” the cardinality constraints using domain

knowledge
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From clauses to cardinality constraints: principle

I Given binary clauses

¬xij ∨ ¬xkj , 1 ≤ i < k ≤ m

for each seat j

I Translate each binary clause ¬xij ∨ ¬xkj into the equivalent
constraint xij + xkj ≥ 1

I Sum up all those constraints related to seat j and three
researchers u, v ,w to obtain 2 ∗ xuj + 2 ∗ xvj + 2 ∗ xkj ≥ 3

I Divide by 2 and round up the RHS to the nearest integer.

I Repeat with one more researcher on derived cardinalities
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From clauses to cardinality constraints: example

¬x11 ∨ ¬x21 ¬x11 ∨ ¬x31 ¬x21 ∨ ¬x31

x11 + x21 ≥ 1 x11 + x31 ≥ 1 x21 + x31 ≥ 1

2 ∗ x11 + 2 ∗ x21 + 2 ∗ x31 ≥ 3

x11 + x21 + x31 ≥ 2

≡
x11 + x21 + x31 ≤ 1
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From clauses to cardinality constraints: example

¬x11 ∨ ¬x21 ¬x11 ∨ ¬x31 ¬x11 ∨ ¬x41

¬x21 ∨ ¬x31 ¬x21 ∨ ¬x41 ¬x31 ∨ ¬x41

x11 + x21 ≥ 1 x11 + x31 ≥ 1 x11 + x41 ≥ 1

x21 + x31 ≥ 1 x21 + x41 ≥ 1 x31 + x41 ≥ 1

x11 + x21 + x31 ≥ 2

x11 + x21 + x41 ≥ 2

x11 + x31 + x41 ≥ 2

x21 + x31 + x41 ≥ 2

x11 + x21 + x31 + x41 ≥ 3

≡ x11 + x21 + x31 + x41 ≤ 1
10/81
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Motivation

I CDCL SAT solvers are very efficient (cf yesterday’s lectures by
Mate)

I Clauses are of limited expressivity to express “counting”
constraints

I CDCL proof system is resolution [PD11, AFT11]

I Resolution in CDCL is used during conflict analysis to produce
new clauses

I This talk:
I Consider more expressive constraints: pseudo-Boolean

constraints
I Change he conflict analysis procedure to produce

pseudo-Boolean constraints
I Using the “cutting planes” proof system?
I Recovering cardinality constraints in practice
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Outline of the talk

Motivating example

Definitions and properties

Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven “cutting planes” reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers
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Linear Pseudo-Boolean constraints (LPB)

n∑
i=1

aixi ⊗ k

I boolean variables xi are integers taking their value in {0, 1}
(xi ≥ 0 and xi ≤ 1)

I xi = 1− x
I coefficients ai and degree k are integer-valued constants
I ⊗ ∈ {<,≤,=,≥, >}

with (< k ↔≤ k − 1 and = k ↔≤ k ∧ ≥ k)

Pseudo-Boolean decision problem: satisfying a set of LPB is
NP-complete

(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2
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LPB = Concise boolean function representation

I clauses are specific LPB:

n∨
i=1

li ≡
n∑

i=1

li ≥ 1 ≡
n∑

i=1

li ≤ n − 1

x1 ∨ x2 ∨ x3 translates into x1 + x2 + x3 ≥ 1
or x1 + x2 + x3 ≤ 2

I cardinality constraints at least/at most 2 out of {x1, x2, x3}
translate into

x1 + x2 + x3 ≥ 2

x1 + x2 + x3 ≤ 2

I Knapsack constraint:
∑

wi .xi ≤W

I Subset sum constraint:
∑

ai .xi = k



Linear Pseudo Boolean constraints normalization
Representation used when designing a solver

I remember that x = 1− x
I usual form : ≥ inequality and positive constants

−3x1 + 4x2 − 7x3 + x4 ≤ −5

≡ 3x1 − 4x2 + 7x3 − x4 ≥ 5

≡ 3x1 +−4(1− x2) + 7x3 +−(1− x4) ≥ 5

≡ 3x1 + 4x2 + 7x3 + x4 ≥ 10

I note that
x1 + x2 + x3 + x4 + x5 ≤ 1

is represented

x1 + x2 + x3 + x4 + x5 ≥ 4

16/81

http://www.cnrs.fr/
http://www.univ-artois.fr/


Fun facts about PB constraints 1/3

I In a clause or a cardinality constraints, all literals are
equivalent

x1 + x2 + x3 ≥ 2

can be equally satisfied by a pair of literals

I In a PB constraints, literals with the same coefficients are
equivalent

2x1 + 2x2 + x3 + x4 ≥ 2

x1 and x2 are equivalent, so are x3 and x4
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Fun facts about PB constraints 2/3

I A clause can only propagate 1 literal

x1

I A cardinality constraint can propagate only k literals

x1 + x2 + x3 + . . . xk−1 + xk ≥ k

I A PB constraint can propagate between 1 and k literals

4x1 + 4x2 + x3 + x4 + x5 ≥ 9

x1 and x2 are necessarily true
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Fun facts about PB constraints 3/3

I PB constraints can sometimes be rewritten as a conjunction
of simpler constraints

10x1 + 4x2 + 4x3 + x4 + x5 + x6 ≥ 15

≡
x1 ∧ (4x2 + 4x3 + x4 + x5 + x6 ≥ 5)

I A PB constraint may have irrelevant literals

10x1 + 4x2 + 4x3 + x4 + x5 + x6 ≥ 14

≡
x1 ∧ (x2 ∨ x3)

The satisfiability of the constraint does not depend on x4,x5,x6
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Basic operations on Linear inequalities

addition:

∑
i ai .xi ≥ k∑
i a
′
i .xi ≥ k ′∑

i (ai + a′i ).xi ≥ k + k ′

linear combination:

∑
i ai .xi ≥ k∑
i a
′
i .xi ≥ k ′∑

i (α.ai + α′.a′i ).xi ≥ α.k + α′.k ′

with α > 0 and α′ > 0

division:

∑
i ai .xi ≥ k
α > 0∑

i
ai .xi
α ≥

k
α
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TCS division

TCS division:

∑
i α.ai .xi ≥ k
α > 0∑

i ai .xi ≥ d k
αe

tcs division:

2x2 + 2x3 + 2x4 ≥ 3

x2 + x3 + x4 ≥ d3/2e
x2 + x3 + x4 ≥ 2
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ILP division (Chvátal-Gomory cut)

I When the variables xi and degree k are integer

I Removes some non integral part of the cut

ILP division:

∑
i ai .xi ≥ k
α > 0∑

id
ai
α e.xi ≥ d k

αe

5x3 + 3x4 ≥ 5

d5/5ex3 + d3/5ex4 ≥ d5/5e
x3 + x4 ≥ 1

One can always reduce a LPB constraint to a clause!
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Clashing linear combination
Also called Gaussian or Fourier–Motzkin elimination

I Apply linear combination between LPB constraints with at
least one opposite literal.

I Generalization of resolution [Hoo88]

clashing combination:

∑
i ai .xi + α′

∑m
j=1 yj ≥ k∑

i a
′
i .xi + α

∑m
j=1 yj ≥ k ′∑

i (α.ai + α′.a′i ).xi ≥ α.k + α′.k ′ − α.α′.m
with α > 0 and α′ > 0

x1 + x2 + 3x3 + x4 ≥ 3 2x1 + 2x2 + x4 ≥ 3

2x1 + 2x2 + 6x3 + 2x4 + 2x1 + 2x2 + x4 ≥ 2× 3 + 3
2x1 + 2x2 + 6x3 + 2x4 + 2− 2x1 + 2− 2x2 + x4 ≥ 9

6x3 + 3x4 ≥ 5

Note that 2x + 2x = 2, not 0!

Note that the coefficients are growing!
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Some remarks about clashing combination

I Clashing combination looks like resolution?

x1 + x3 + x4 ≥ 1 x1 + x2 + x5 ≥ 1

x2 + x3 + x4 + x5 ≥ 1

I What about common literals?

x1 + x2 + x3 + x4 ≥ 1 x1 + x2 + x4 ≥ 1

2x2 + x3 + 2x4 ≥ 1

I With more than one variable?

x1 + x2 + x3 + x4 ≥ 1 x1 + x2 + x4 ≥ 1

x3 + 2x4 ≥ 0
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Saturation

coefficients can be trimmed to the value of the degree

saturation:

∑
i ai .xi +

∑
j bj .yj ≥ k

bj > k∑
i ai .xi +

∑
j k.yj ≥ k

6x3 + 3x4 ≥ 5

5x3 + 3x4 ≥ 5

2x2 + x3 + 2x4 ≥ 1

x2 + x3 + x4 ≥ 1
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Weakening

We can reduce the degree of the constraint by “satisfying” any of
its literals

weakening:

∑
i 6=j ai .xi + aj .xj ≥ k∑

i 6=j ai .xi ≥ k − aj

5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8

3x2 + 2x3 + 2x4 + x5 ≥ 3

Useful for reducing the value of the degree!

[Apply linear combination rule with xj ≥ 0]
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Reduction to cardinality

Extract a cardinality constraint from a LPB constraint

reduce to card:

∑n
i=1 ai .xi ≥ k

a1 ≥ a2 ≥ ...an∑n
i=1 xi ≥ k ′

with
∑k ′−1

i=1 ai < k ≤
∑k ′

i=1 ai

5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8

x1 + x2 + x3 + x4 + x5 ≥ 2
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The various Cutting Planes

I Linear combination + ILP division = Chvátal-Gomory ILP
cutting planes

I Addition + TCS division = Proof complexity cutting planes

I Linear clashing combination + saturation = Hooker’s
generalized resolution cutting planes

Integrating Cutting Planes in a CDCL solver: replace Resolution
during Conflict Analysis by Hooker’s Cutting Planes
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Requirements for constraints in a CDCL solver

I Detect falsified state

I Detect propagation of literals

I Provide a “reason” during conflict analysis
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Some remarks about clauses

l1 ∨ l2 ∨ ... ∨ ln

I Falsified when all its literals are falsified

l1 ∨ l2 ∨ ... ∨ ln

I Propagates when all but one literals are falsified

l1 ∨ l2 ∨ ... ∨ ln

I Propagates one literal

I Appears at most once as a reason for an assignment

Chaff: 2 watched literals per clause
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Some remarks about cardinality constraints

l1 + l2 + ...+ ln ≥ k

I Falsified when at least n − k + 1 literals are falsified

l1 + l2 + l3 + l4 + l5 + l6 ≥ 4

Note unassigned literals!
I Propagates when exactly n − k literals are falsified

l1 + l2 + l3 + l4 + l5 + l6 ≥ 4

I Propagates k literals
I Appears at most once as a reason for at most k consecutive

assignments.

Extended k + 1 watched literals per cardinality
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Some remarks about LBP constraints

a1.l1 + a2.l2 + ...+ an.ln ≥ k

A =
∑

i

ai

Slack s: A− k −
∑

li falsified ai

I Falsified when s < 0 (depends on falsified literals)

5l1 + 3l2 + 2l3 + l4 + l5 + l6 ≥ 6

I Propagates remaining literals when s = 0

5l1 + 3l2 + 2l3 + l4 + l5 + l6 ≥ 6

I Propagates literals xi for which s < ai

I May appear several times as a reason for non consecutive
assignments

Extended watched literals based on coefficients!



Watched Literals for LPB constraints

Described in Galena [CK03] and BChaff [Par04], may have already
existed in PBS or Satzoo.

I General case:
Let M = max(ai )
NbWatch = minimal number of literals xi such that∑

ai ≥ k + M.

I Cardinality constraints:
M = 1
NbWatch = k + 1

I Clauses:
M = 1
k = 1
NbWatch = 2
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Watched literals: consequences

I In LPB constraints, the number of WL is varying during the
search.

I In cardinality constraints, the greater the degree, the greater
the number of WL.

I Clauses are the best case!

I Big difference for LPB constraint learning
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Forced truth values: Implicative and Assertive constraints

I unit clause: a clause that propagates one truth value to be
satisfiable

I implicative constraint: a constraint which propagates at least
one truth value to be satisfiable.

I a LPB constraint C is implicative iff ∃aixi ∈ C such that∑
j 6=i aj < k or

∑
aj − k < ai .



Forced truth values: Implicative and Assertive constraints

I unit clause: a clause that propagates one truth value to be
satisfiable

I implicative constraint: a constraint which propagates at least
one truth value to be satisfiable.

I a LPB constraint C is implicative iff ∃aixi ∈ C such that∑
j 6=i aj < k or

∑
aj − k < ai .

Example

4x1 + 3x2 + x3 + x4 ≥ 8

propagates x1 and x2

I 3 + 1 + 1 < 8 so x1 must be satisfied, same thing on
3x2 + x3 + x4 ≥ 4.

I One can note that
∑

aj − k = 1 so any literal xi with a coef
greater than 1 must be propagated.

I Rewrite into x1 ∧ x2 ∧ (x3 + x4 ≥ 1) ?
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Problems with the integration of Cutting Planes

I Derived LPB constraint must be redondant (logical
consequence)
no problem here

I Derived LPB constraint must be falsified at current decision
level
free for resolution, requires special care for CP

I Derived LPB constraint must be assertive at backtrack level
syntactical test for clauses, not for PB constraints
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Computing the backtrack level

I Just a max for clauses
I More complicated for LPBC: an LPB constraint may be

assertive at different backtrack levels.
I Decision literals are no longer “UIP”!
I Need to backtrack to the first one

Example

Given the decisions x1,¬x2,¬x3

and the falsified LBP 3x1 + 2x2 + x3 + x4 ≥ 5.
Where should I backtrack?
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Computing the backtrack level

I Just a max for clauses
I More complicated for LPBC: an LPB constraint may be

assertive at different backtrack levels.
I Decision literals are no longer “UIP”!
I Need to backtrack to the first one

Example

Given the decisions x1,¬x2,¬x3

and the falsified LBP 3x1 + 2x2 + x3 + x4 ≥ 5.
Where should I backtrack?
backtrack to x1,¬x2 to propagate x3 and x4?
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Computing the backtrack level

I Just a max for clauses
I More complicated for LPBC: an LPB constraint may be

assertive at different backtrack levels.
I Decision literals are no longer “UIP”!
I Need to backtrack to the first one

Example

Given the decisions x1,¬x2,¬x3

and the falsified LBP 3x1 + 2x2 + x3 + x4 ≥ 5.
Where should I backtrack?
backtrack to x1,¬x2 to propagate x3 and x4?
or to decision level 0 to propagate x1?

39/81

http://www.cnrs.fr/
http://www.univ-artois.fr/


Computing an assertive clause

I Let C be a falsified constraint

I S = lit(C )>dl

I D = lit(C )=dl

1 Pick the reason R for the latest assignment a in C

2 Compute S = S ∪ lit(R)>dl and D = D ∪ lit(R)=dl \ {a}
I Repeat 1− 2 until |D| = 1
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Computing an assertive LPB constraint

1. Let C be a falsified constraint

2. Pick the reason R for the latest assignment a in C

3. compute α and α′ to remove a from C .

4. Weaken R if needed to ensure that the LPB constraint
generated by applying linear combination is falsified
(reduction)

5. Apply clashing combination: C = CC (C ,R, α, α′)

6. Apply saturation

7. Update the slack of the generated constraint

8. Repeat 2-7 until the slack is 0

Use arbitrary precision arithmetic to prevent overflow
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Computing an assertive LPB constraint

1. Let C be a falsified constraint

2. Pick the reason R for the latest assignment a in C

3. compute α and α′ to remove a from C .

4. Weaken R if needed to ensure that the LPB constraint
generated by applying linear combination is falsified
(reduction)

5. Apply clashing combination: C = CC (C ,R, α, α′)

6. Apply saturation

7. Update the slack of the generated constraint

8. Repeat 2-7 until the slack is 0

Use arbitrary precision arithmetic to prevent overflow
Not needed if reduced to cardinality constraint
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Example


(C1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(C2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(C3) x1 + x3 + x4 ≥ 2

¬x0
5 , x

0
1 [C1],¬x1

4 , x
1
3 [C3], x1

2 [C1]

Poss(C1) = +2, Poss(C2) = −2
Red. x1: (C ′1) 3x2 + 2x3 + 2x4 + x5 ≥ 3 poss=+2
Red. x3: (C ′′1 ) x2 + x4 + x5 ≥ 1 poss=0
CC(C2,3× C ′′1 ) = 2x1

0 + 2x3
1 + x1

4 + 2x0
5 ≥ 2

Assertive at decision level 0 (x3 is propagated to 1).

Would learn x1 + x4 + x5 ≥ 1 with clause learning.
Assertive at decision level 0 (x4 is propagated to 1).
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A brief history of LPB constraints within SAT solvers

[Bar95] DPLL extension to LPB [opbdp]
[Wal97] (and [Pre02, Pre04]) local search for LPB
[MFSO97] B’n’B LPB solver (GRASP) [bsolo]
[WKS01] incremental SAT with LPB (GRASP) [satire]
[ARMS02, Sak03] LPB contraints with Chaff/CDCL solver

[pbs, see also satzoo (minisat)]
[Gin02] extended RelSAT to LPB (LPB learning)
[CK03] CDCL with LPB learning [galena]
[Par04] describe a generic CDCL solver based on group theory
handling arbitrary boolean gates.
[SS06] CDCL solver able to learn temporary LPB constraints
[pueblo]
[ALS09] Generalization of PBO [WBO/OpenWBO]
[EN18] Specific division rule [RoundingSAT]
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[SS06] CDCL solver able to learn temporary LPB constraints
[pueblo]
[ALS09] Generalization of PBO [WBO/OpenWBO]
[EN18] Specific division rule [RoundingSAT]
Main interest moved to MAXSAT since a decade, Major work on
CNF encoding of cardinality and LBP constraints (Minisat+ effect)



SAT4J Pseudo

I Implements the LPB learning described in PBChaff [Gin02]
and Galena[CK03]
I Cardinality learning preferred to LPB learning
I No management of integer overflow
I Solvers no longer developed

I Based on Minisat 1 specification implemented in Java

I Two versions available: resolution based inference or Hooker’s
generalized resolution “cutting planes” based inference.
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LPB constraints case: what can go wrong

Boolean propagation lazy data structure for maintaining an alert
value require more bookkeeping than for clauses.

Assertive constraints cannot syntactically be identified.
Linear combination between two conflictual constraints doesn’t

necessary result in a falsified constraint! Weakening
may be needed to obtain a cutting plane.

Coefficient management In some cases, the coefficients of the LPB
keep growing.

Consequence: learning PB constraints does slow down the solver!
Solutions:
I Reduce learned clauses to Cardinality constraints (Galena,

PBChaff)
I Learn both a clause and a PB constraint, then eventually

remove the PB constraint (Pueblo).
I Learn clauses (Minisat+, PBS).
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Outline

Motivating example

Definitions and properties

Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven “cutting planes” reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers
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Optimization using strengthening (linear search)

input : A set of clauses, cardinalities and pseudo-boolean
constraints setOfConstraints and an objective function
objFct to minimize

output: a model of setOfConstraints, or unsat if the problem
is unsatisfiable.

answer ← isSatisfiable (setOfConstraints);
if answer is Unsat then

return Unsat
end
repeat

model ← answer;
answer ← isSatisfiable (setOfConstraints ∪

{objFct < objFct (model)});

until ( answer is Unsat);
return model;
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Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min: 4x2 + 2x3 + x5
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Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min: 4x2 + 2x3 + x5

The objective function value 1 is optimal for the formula.
x1, x2, x3, x4, x5 is an optimal solution.
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Remarks about the optimization procedure

I No need for an initial upper bound!

I Phase selection strategy takes into account the objective
function.

I External to the PB solver: can use any PB solver.

I SAT, SAT, SAT, ..., SAT, UNSAT pattern

I SAT answer usually easier to provide than UNSAT one

I In practice: optimality is often hard to prove for the
Resolution based PB solver (pigeon hole?).

I Ideally, would like to run the CP PB solver to prove optimality
at the end.

I Problem: how to detect that we need to prove optimality?

I Nice idea suggested by Olivier Roussel submitted to PB 2010:
run the Res and CP PB solvers in parallel!
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Optimization with solvers running in parallel

input : A set of clauses, cardinalities and pseudo-boolean
constraints setOfConstraints and an objective function
objFct to minimize

output: a model of setOfConstraints, or unsat if the problem
is unsatisfiable.

answer ← isSatisfiable (setOfConstraints);
if answer is Unsat then

return Unsat
end
repeat

model ← answer;
answer ← isSatisfiable (setOfConstraints ∪

{objFct < objFct (model)});

until ( answer is Unsat);
return model;
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logic-synthesis/normalized-jac3.opb @ PB2010

% Cutting Planes

1.17/0.78 c #vars 1731

1.17/0.78 c #constraints 1254

1.76/1.03 c SATISFIABLE

1.76/1.03 c OPTIMIZING...

1.76/1.03 o 26

3.40/1.91 o 25

5.93/3.41 o 24

6.97/4.33 o 23

7.49/4.88 o 22

8.44/5.72 o 21

9.00/6.27 o 20

9.62/6.87 o 19

10.44/7.61 o 18

11.54/8.79 o 17

13.03/10.13 o 16

25.34/22.07 o 15

1800.11/1773.42 s SATISFIABLE

% Resolution

1.17/0.75 c #vars 1731

1.17/0.75 c #constraints 1254

1.57/0.91 c SATISFIABLE

1.57/0.91 c OPTIMIZING...

1.57/0.91 o 26

2.55/1.42 o 23

2.96/1.60 o 22

3.35/1.80 o 21

16.34/14.32 o 20

55.04/52.91 o 19

766.33/763.00 o 18

1800.04/1795.76 s SATISFIABLE



logic-synthesis/normalized-jac3.opb @ PB2010

% Cutting Planes

1.17/0.78 c #vars 1731

1.17/0.78 c #constraints 1254

1.76/1.03 c SATISFIABLE

1.76/1.03 c OPTIMIZING...

1.76/1.03 o 26

3.40/1.91 o 25

5.93/3.41 o 24

6.97/4.33 o 23

7.49/4.88 o 22

8.44/5.72 o 21

9.00/6.27 o 20

9.62/6.87 o 19

10.44/7.61 o 18

11.54/8.79 o 17

13.03/10.13 o 16

25.34/22.07 o 15

1800.11/1773.42 s SATISFIABLE

% Res // CP

1.35/0.84 c #vars 1731

1.35/0.84 c #constraints 1254

1.99/1.85 c SATISFIABLE

1.99/1.85 c OPTIMIZING...

1.99/1.85 o 26 (CuttingPlanes)

2.61/2.89 o 25 (Resolution)

3.91/3.92 o 24 (Resolution)

4.12/5.00 o 23 (Resolution)

5.92/6.01 o 22 (Resolution)

7.72/7.04 o 21 (Resolution)

9.63/8.07 o 20 (CuttingPlanes)

13.04/10.09 o 19 (CuttingPlanes)

15.66/12.10 o 18 (CuttingPlanes)

20.27/15.14 o 17 (CuttingPlanes)

70.03/41.35 o 16 (CuttingPlanes)

218.63/118.14 o 15 (CuttingPlanes)

305.11/164.68 s OPTIMUM FOUND



logic-synthesis/normalized-jac3.opb @ PB2010

Cutting Planes

1800.11/1773.42 s SATISFIABLE

1800.11/1773.41 c learnt clauses : 2618

1800.11/1773.42 c speed (assignments/second) : 226

Res // CP

305.11/164.68 s OPTIMUM FOUND

305.11/164.68 c learnt clauses : 1318

305.11/164.68 c speed (assignments/second) : 3927



Scatter plots Res // CP vs CP, Resolution
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Regarding the idea to run the two solvers in //

I Res // CP globally better than Res or CP solver during PB
2010 in number of benchmarks solved.

I Res // CP twice as slow as Res on many benchmarks.

I Decision problems: solves the union of the benchmarks solved
by Res and CP in half the timeout (CPU time taken into
account, not wall clock time).

I Optimization problems: “cooperation” of solvers allow to
solve new benchmarks!
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The Pseudo Boolean evaluations
http://www.cril.univ-artois.fr/PB16/

I Organized by Olivier Roussel and Vasco Manquinho from
2005 to 2012, and 2016

I Uniform input format: OPB files

I Independent assessment of the PB solvers

I Detailed results available for each solver

I Various technologies used since 2006

I WBO category since 2010
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Partial results of the PB12 evaluation

Min-
iSat+

Cplex Clasp Sat4j Res
// CP

Bsolo Sat4j
Res

Dec. 91 88 97 119 115 91 UNS
(#355) 129 104 149 130 123 140 SAT

Opt S 22 21 21 22 21 21 UNS
(#657) 257 355 260 253 279 257 OPT

Opt B 23 - - 23 - 23 UNS
(#416) 15 - - 80 - 74 OPT

See http://www.cril.univ-artois.fr/PB12/results/results.php?idev=67 for details
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Partial results of the PB16 evaluation

Min-
iSat+

Open-
WBO

Sat4j Res //
CP

cdcl-
cp

NaPS

Dec. 935 1049 1052 1092 1023 UNS
(#1783) 384 329 315 303 338 SAT

Opt S 76 45 89 89 85 UNS
(#1600) 713 781 672 685 802 OPT

Opt B 70 - 70 - 69 UNS
(#1109) 166 - 196 - 305 OPT

See http://www.cril.univ-artois.fr/PB16/results/ranking.php?idev=81 for details
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Outline

Motivating example

Definitions and properties

Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven “cutting planes” reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers
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Semantic cardinality detection
Armin Biere, Daniel Le Berre, Emmanuel Lonca, Norbert Manthey: Detecting Cardinality
Constraints in CNF. SAT 2014: 285-301

I Theory tells us that Cutting Planes should work on CNF

I Current implementations do not

I Can we find a way to help PB solvers work on CNF?

I Caution: we need a general process, not one dedicated to a
given problem or constraint
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Cryptography instance: cardinality constraints vs. clauses

I sha1-006.cnf : 478484 clauses

I sha1-006.{cnf/opb}:
Threshold size count

1 3 17
2 4 321
2 5 3
3 5 872
3 6 13
4 6 3248

Threshold size count

4 7 50
5 7 36403
5 8 66
6 8 41643
6 9 656

and 41787 remaining clauses

I sha1-006.{cnf/opb} contains 125079 constraints : reduced by
a factor of 4
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PHP: cardinality constraints vs. clauses

PHP: inconsistency proof computation time
I pigeons-100-hole.cnf:

I resolution → timeout (900s)
I generalized resolution[Hoo88] → timeout (900s)

I pigeons-100-hole.opb:
I resolution → timeout (900s)
I generalized resolution[Hoo88] → < 1s.

I Cardinality constraints allow the use of stronger proof systems
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Cardinality constraints vs. clauses

I pros :
I a cardinality constraint may replace an exponential number of

clauses or prevent the use of auxiliary variables
I allow to use strong proof systems (generalized resolution)

I cons:
I difficult detection : many encoding exist to translate

cardinality constraints into CNF
I deriving cardinality constraints using Cutting Planes proof

system does not fit well with CDCL architecture
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Some known encodings

Short list of known encodings :

I Pairwise encoding [CCT87]

I Nested encoding

I Two product encoding [Che10]

I Sequential encoding [Sin05]

I Commander encoding [FG10]

I Ladder encoding [GN04]

I Adder encoding [ES06]

I Cardinality Networks [ANORC09]

I ...
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Syntactic vs. semantic detection

I Syntactic detection:
I need of an ad hoc algorithm for each {encoding,k}

I Our semantic detection:
I based on unit propagation
I adapted to any encoding preserving arc-consistency
I may potentially detect constraints that were not known at

encoding time
I detection may be altered by auxiliary variables
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Semantic detection of AtMost-k constraint

detecting a cardinality constraint in a semantic way:

1. select a clause of size n, and translate it into an AtMost-k of
degree n − 1 :

n∨
i=1

xi ≡
n∑

i=1

¬xi ≤ n − 1

2. look for literals mj to extend this constraint:

n∑
i=1

(¬xi ) + m1 + ...+ mp ≤ n − 1
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Semantic detection of AtMost-k constraint: example

formula :

¬x1 ∨ ¬x2

¬x1 ∨ ¬x4

x4 ∨ ¬x3

¬x2 ∨ ¬x5

x5 ∨ ¬x3

detection of
3∑

i=1
xi ≤ 1
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Semantic detection of AtMost-k constraint: example

formula :

¬x1 ∨ ¬x2

¬x1 ∨ ¬x4

x4 ∨ ¬x3

¬x2 ∨ ¬x5

x5 ∨ ¬x3

¬x1 ∨ ¬x2

≡
x1 + x2 ≤ 1

PU(x1) = { x1,¬x2,¬x3,¬x4 }
PU(x2) = {¬x1, x2,¬x3, ¬x5}

γ = { ¬x3 }

detection of
3∑

i=1
xi ≤ 1

67/81

http://www.cnrs.fr/
http://www.univ-artois.fr/


Semantic detection of AtMost-k constraint: example

formula :

¬x1 ∨ ¬x2

¬x1 ∨ ¬x4

x4 ∨ ¬x3

¬x2 ∨ ¬x5

x5 ∨ ¬x3

¬x1 ∨ ¬x2

≡
x1 + x2 ≤ 1

PU(x1) = { x1,¬x2,¬x3,¬x4 }
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x1 + x2 + x3 ≤ 1

detection of
3∑

i=1
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Cardinality constraint extension

Cardinality constraint extension:

1. let α =
∑n

i=1 xi ≤ k

2. initialization of the propagation set γ = {vi ,¬vi | v ∈ PS}
3. for each subset of k literals xi , we compute the unit

propagation set δ, and we refine the propagation set:

γ ← γ ∩ δ

4. if there exists m ∈ γ, then α =
∑n

i=1 xi + ¬m ≤ k and goto 2
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Experimental evaluation

I aim of the experiments: check that detected constraints help
a generalized resolution based solver

I solvers:
I Lingeling: able to detect pairwise encoding
I Synt.+Sat4jCP, Sem.+Sat4jCP, Sat4jCP w/o preprocessing
I SBSAT: able to detection cardinality constraints via

compilation steps

I Intel Xeon@2.66GHz, 32Go RAM, timeouts=900s

Sat4jCP uses Generalized Resolution, not Cutting Planes, i.e. can
only derive clauses when applied to clauses.1

1Thanks to Jakob Nordström ’s group for discussions on that subject
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Results

Influence of detected constraints for some encodings of PHP:

Preprocessing #inst. Lingeling Synt.(Riss) Sem.(Riss) ∅ ∅
Solver Lingeling Sat4jCP Sat4jCP SBSAT Sat4jCP

Pairwise 14 14 (3s) 13 (244s) 14 (583s) 6 (0s) 1 (196s)
Binary 14 3 (398s) 2 (554s) 7 (6s) 6 (7s) 2 (645s)

Sequential 14 0 (0s) 14 (50s) 14 (40s) 10 (6s) 1 (37s)
Product 14 0 (0s) 14 (544s) 11 (69s) 6 (25s) 2 (346s)

Commander 14 1 (3s) 7 (0s) 14 (40s) 9 (187s) 1 (684s)
Ladder 14 0 (0s) 11 (505s) 11 (1229s) 12 (26s) 1 (36s)

solved instances (computation time of solved instances)
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Lingeling efficient for pairwise encoding only (the best)
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Ladder 14 0 (0s) 11 (505s) 11 (1229s) 12 (26s) 1 (36s)
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Sem.+Sat4jCP efficient on most encodings ; best on binary,
sequential and commander encodings
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Results

Influence of detected constraints for balanced block design
instances:

Preprocessing #inst. Lingeling Synt.(Riss) Sem.(Riss) ∅ ∅
Solver Lingeling Sat4jCP Sat4jCP SBSAT Sat4jCP

Sgen unsat 13 0 (0s) 13 (0s) 13 (0s) 9 (614s) 4 (126s)

Fixed bandwidth 23 2 (341s) 23 (0s) 23 (0s) 23 (1s) 13 (1800s)
Rand. orderings 168 16 (897s) 168 (7s) 168 (8s) 99 (2798s) 69 (3541s)

Rand. 4-reg. 126 6 (1626s) 126 (4s) 126 (5s) 84 (2172s) 49 (3754s)

solved instances (computation time of solved instances)
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Further results...

I “crossed” constraints: Sudoku grid
I Sudoku 9x9: syntactic preprocessing detects 300/324

constraints, semantic one detects 324/324 constraints
I Sudoku 16x16: syntactic preprocessing detects 980/1024

constraints, semantic one detects 1024/1024 constraints

I Challenge benchmark of [VS10] (clasp unable to solve within
24h): solved within a second thanks to semantic preprocessing
(AtMost-3 constraints inside)
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Outline

Motivating example

Definitions and properties

Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven “cutting planes” reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers
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A Conflict Analysis with Generalized Resolution

Consider the following constraints

χ1 : ā + b̄ + f ≥ 2
χ2 : 3x̄ + a+b+d + e ≥ 4
χ3 : 4a + 2b + 2c + x ≥ 5

f = 0@1

a = 0@1

b = 0@1

x = 0@1

χ1

χ1

χ2

χ2

We have falsified χ3! This conflict is analyzed by resolving χ3

against χ2 which is the reason for x̄

χ3 χ2

13a + 7b + 6c + d + e ≥ 16

This constraint is learned because it propagates a to 1 at level 0
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A Problem with the Learned Constraint?

The constraint learned after conflict analysis is

13a + 7b + 6c + d + e ≥ 16

Let us have a close look at this constraint...
Literals d and e have no effect on the constraint: they are
irrelevant!

In particular, this means that removing these literals from the
constraint preserves equivalence

13a + 7b + 6c ≥ 16
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A Problem with the Learned Constraint?

The constraint learned after conflict analysis is

13a + 7b + 6c + d + e ≥ 16

Let us have a close look at this constraint...
Literals d and e have no effect on the constraint: they are
irrelevant!
In particular, this means that removing these literals from the
constraint preserves equivalence

13a + 7b + 6c ≥ 14
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Irrelevant Literals in Practice (in Sat4j)

• Number of irrelevant literals in Sat4j-CP’s first 5,000 learned constraints
• Experiments conducted on the 777 decision benchmarks from PB’16

• Sat4j as an example of Generalized-Resolution-based solver
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RoundingSat’s Approach [Elffers and Nordström, 2018]

RoundingSat uses a different approach, which mainly consists in
using the division rule instead of saturation

∑n
i=1 ai li ≥ d α > 0

(division)∑n
i=1d

ai
α eli ≥ d

d
αe
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A Conflict Analysis in RoundingSat

Consider the following constraints:

χ1 : 2c̄ + 2d̄ + b + ē ≥ 4
χ2 : 3a+3b+c+d+e ≥ 4
χ3 : 2ā + b + e ≥ 2

e = 1@1

c = 0@1

d = 0@1

b = 0@2 a = 1@2

χ1

χ1

χ2

We have falsified χ3! Before applying clashing addition, χ2 is
weakened on e and divided by 3

χ2

3a + 3b + c + d ≥ 3
a + b + c + d ≥ 1

Observe how c and d become irrelevant, and then relevant again,
and how they prevent the inference of the stronger constraint

a + b ≥ 1
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χ3 : 2ā + b + e ≥ 2

e = 1@1

c = 0@1

d = 0@1

b = 0@2 a = 1@2

χ1

χ1

χ2

We have falsified χ3! Before applying clashing addition, χ2 is
weakened on e and divided by 3

χ2

3a + 3b + c + d ≥ 3
a + b + c + d ≥ 1

Observe how c and d become irrelevant, and then relevant again,
and how they prevent the inference of the stronger constraint

a + b ≥ 1

78/81

http://www.cnrs.fr/
http://www.univ-artois.fr/


A Conflict Analysis in RoundingSat

Consider the following constraints:

χ1 : 2c̄ + 2d̄ + b + ē ≥ 4
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Irrelevant Literals in Practice (in RoundingSat)

• Number of irrelevant literals in RoudingSat’s first 100,000 weakened
constraints

• Experiments conducted on the 777 decision benchmarks from PB’16
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Why are Irrelevant Literals an Issue?

Irrelevant literals make coefficients bigger than necessary:

17a + 10b + 10c + d + e ≥ 17

≡ 17a + 10b + 10c ≥ 15

≡ 15a + 10b + 10c ≥ 15

≡ 3a + 2b + 2c ≥ 3

Applying generalized resolution is harder when coefficients are big
due to the need of arbitrary precision

Irrelevant literals hide cardinality constraints:

3a + 3b + 3c + 3d + e + f ≥ 6 ≡ 3a + 3b + 3c + 3d ≥ 4

≡ a + b + c + d ≥ 2

Efficient data structures implemented in PB solvers cannot be used
when cardinality constraints are hidden
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Conclusion

I PB constraint represent concisely some Boolean functions

I It is possible to introduce some kind of cutting planes
reasoning in CDCL solvers, driven by conflict analysis

I Solves PHP instances expressed by cardinalities (not CNF)

I Semantic cardinality detection can help when input is CNF

I But in practice learning LPB often slows down the solver

I Last decade focussed on encoding those constraints into CNF

I Recent work toward new proof systems, cardinality detection
(Jakob Nordstrom’s group)

I None of existing rules prevent irrelevant literals production
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