From clauses to pseudo-Boolean constraints in a Boolean solver

Daniel Le Berre

joint work with Armin Biere, Emmanuel Lonca, Pierre Marquis, Stefan Mengel, Norbert Manthey, Anne Parrain, Romain Wallon

> CNRS, Université d'Artois, FRANCE \{leberre\}@cril.univ-artois.fr

SAT+SMT school, IIT Bombay, India, 10 December 2019

Outline

Motivating example

Definitions and properties

Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven "cutting planes" reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers

Simple decision problem

Can we sit m researchers on $m-1$ seats?

Simple decision problem

Can we sit m researchers on $m-1$ seats?

More precisely, we consider that

- Each researcher should have a seat
- Each seat cannot host more than a researcher

Can we answer that question with a SAT solver?

- Each Boolean variable $x_{i j}$ denote that research i is seated on seat j
- "Each researcher should have a seat" translate to

$$
\bigvee_{j=1}^{m-1} x_{i j}
$$

for each researcher i

- "Each seat cannot host more than a researcher"

$$
\neg x_{i j} \vee \neg x_{k j}
$$

for each seat j, with $1 \leq i<k \leq m$

Can we answer that question with a SAT solver?

- Each Boolean variable $x_{i j}$ denote that research i is seated on seat j
- "Each researcher should have a seat" translate to

$$
\bigvee_{j=1}^{m-1} x_{i j}
$$

for each researcher i

- "Each seat cannot host more than a researcher"

$$
\neg x_{i j} \vee \neg x_{k j}
$$

for each seat j, with $1 \leq i<k \leq m$
A modern CDCL SAT solver without specific counting features will not answer that question in reasonable time for $m>20$

Can we answer that question with a PB solver?

- Each Boolean variable $x_{i j}$ denote that research i is seated on seat j
- "Each researcher should have a seat" translate to

$$
\sum_{j=1}^{m-1} x_{i j} \geq 1
$$

for each researcher i

- "Each seat cannot host more than a researcher"

$$
\sum_{i=1}^{m} x_{i j} \leq 1
$$

for each seat j

Can we answer that question with a PB solver?

- Each Boolean variable $x_{i j}$ denote that research i is seated on seat j
- "Each researcher should have a seat" translate to

$$
\sum_{j=1}^{m-1} x_{i j} \geq 1
$$

for each researcher i

- "Each seat cannot host more than a researcher"

$$
\sum_{i=1}^{m} x_{i j} \leq 1
$$

for each seat j
A modern PB solver based on resolution will not answer that question in reasonable time for $m>20$

Can we answer that question with a PB solver?

- Each Boolean variable $x_{i j}$ denote that research i is seated on seat j
- "Each researcher should have a seat" translate to

$$
\sum_{j=1}^{m-1} x_{i j} \geq 1
$$

for each researcher i

- "Each seat cannot host more than a researcher"

$$
\sum_{i=1}^{m} x_{i j} \leq 1
$$

for each seat j
A modern PB solver based on CuttingPlanes will answer that question in a matter of seconds (until the input is too large)

Principle of the human proof for $\mathrm{m}=3$

$$
\begin{aligned}
& \text { (1) } x_{11}+x_{12} \geq 1 \\
& \text { (2) } x_{21}+x_{22} \geq 1 \\
& \text { (3) } x_{31}+x_{32} \geq 1 \\
& \text { (4) } x_{11}+x_{21}+x_{31} \leq 1 \\
& \text { (5) } x_{12}+x_{22}+x_{32} \leq 1
\end{aligned}
$$

Principle of the human proof for $\mathrm{m}=3$

$$
\begin{aligned}
& \text { (1) } x_{11}+x_{12} \geq 1 \\
& \text { (2) } x_{21}+x_{22} \geq 1 \\
& \text { (3) } x_{31}+x_{32} \geq 1 \\
& \text { (4) } \overline{x_{11}}+\overline{x_{21}}+\overline{x_{31}} \geq 2 \\
& \text { (5) } \overline{x_{12}}+\overline{x_{22}}+\overline{x_{32}} \geq 2
\end{aligned}
$$

Principle of the human proof for $\mathrm{m}=3$

> (1) $x_{11}+x_{12} \geq 1$
> (2) $x_{21}+x_{22} \geq 1$
> (3) $x_{31}+x_{32} \geq 1$
> (4) $\overline{x_{11}}+\overline{x_{21}}+\overline{x_{31}} \geq 2$
> (5) $\overline{x_{12}}+\overline{x_{22}}+\overline{x_{32}} \geq 2$
> $(1)+(2)+(3)+(4)=(6) x_{12}+x_{22}+x_{32} \geq 2$

Principle of the human proof for $\mathrm{m}=3$

> (1) $x_{11}+x_{12} \geq 1$
> (2) $x_{21}+x_{22} \geq 1$
> (3) $x_{31}+x_{32} \geq 1$
> (4) $\overline{x_{11}}+\overline{x_{21}}+\overline{x_{31}} \geq 2$
> (5) $\overline{x_{12}}+\overline{x_{22}}+\overline{x_{32}} \geq 2$
> $(1)+(2)+(3)+(4)=(6) x_{12}+x_{22}+x_{32} \geq 2$
> (5) + (6) $=$ (7) $3 \geq 4$

Human vs Solver, Complexity Theory vs Modeling

- In practice, the way the constraints are expressed matters:
- easier to read, to understand the model for a human
- the number of constraints may be different ($\frac{m *(m-1)}{2}$ vs $m-1$)
- the solver can apply new inference rules (e.g. Cutting Plane) on higher abstraction constraints
- In theory, the input must be the same when talking about complexity
- requires e.g. input in CNF for comparing resolution vs Cutting Plane
- does not allow efficient encodings which rely on the addition of new variables
- rely on "recovering" the cardinality constraints using domain knowledge

From clauses to cardinality constraints: principle

- Given binary clauses

$$
\neg x_{i j} \vee \neg x_{k j}, 1 \leq i<k \leq m
$$

for each seat j

- Translate each binary clause $\neg x_{i j} \vee \neg x_{k j}$ into the equivalent constraint $\overline{x_{i j}}+\overline{x_{k j}} \geq 1$
- Sum up all those constraints related to seat j and three researchers u, v, w to obtain $2 * \overline{x_{u j}}+2 * \overline{x_{v j}}+2 * \overline{x_{k j}} \geq 3$
- Divide by 2 and round up the RHS to the nearest integer.
- Repeat with one more researcher on derived cardinalities

From clauses to cardinality constraints: example

$$
\begin{gathered}
\neg x_{11} \vee \neg x_{21} \quad \neg x_{11} \vee \neg x_{31} \quad \neg x_{21} \vee \neg x_{31} \\
\overline{x_{11}}+\overline{x_{21}} \geq 1 \quad \overline{x_{11}}+\overline{x_{31}} \geq 1 \quad \overline{x_{21}}+\overline{x_{31}} \geq 1 \\
2 * \overline{x_{11}}+2 * \overline{x_{21}}+2 * \overline{x_{31}} \geq 3 \\
\overline{x_{11}}+\overline{x_{21}}+\overline{x_{31}} \geq 2 \\
\equiv \\
x_{11}+x_{21}+x_{31} \leq 1
\end{gathered}
$$

From clauses to cardinality constraints: example

$$
\begin{array}{lll}
\neg x_{11} \vee \neg x_{21} & \neg x_{11} \vee \neg x_{31} & \neg x_{11} \vee \neg x_{41} \\
\neg x_{21} \vee \neg x_{31} & \neg x_{21} \vee \neg x_{41} & \neg x_{31} \vee \neg x_{41} \\
& & \\
\overline{x_{11}}+\overline{x_{21}} \geq 1 & \overline{x_{11}}+\overline{x_{31}} \geq 1 & \overline{x_{11}}+\overline{x_{41}} \geq 1 \\
\overline{x_{21}}+\overline{x_{31}} \geq 1 & \overline{x_{21}}+\overline{x_{41}} \geq 1 & \overline{x_{31}}+\overline{x_{41}} \geq 1
\end{array}
$$

$$
\begin{aligned}
& \overline{x_{11}}+\overline{x_{21}}+\overline{x_{31}} \geq 2 \\
& \overline{x_{11}}+\overline{x_{21}}+\overline{x_{41}} \geq 2 \\
& \overline{x_{11}}+\overline{x_{31}}+\overline{x_{41}} \geq 2 \\
& \overline{x_{21}}+\overline{x_{31}}+\overline{x_{41}} \geq 2
\end{aligned}
$$

$$
\begin{gathered}
\overline{x_{11}}+\overline{x_{21}}+\overline{x_{31}}+\overline{x_{41}} \geq 3 \\
\equiv x_{11}+x_{21}+x_{31}+x_{41} \leq 1
\end{gathered}
$$

Motivation

- CDCL SAT solvers are very efficient (cf yesterday's lectures by Mate)
- Clauses are of limited expressivity to express "counting" constraints
- CDCL proof system is resolution [PD11, AFT11]
- Resolution in CDCL is used during conflict analysis to produce new clauses
- This talk:
- Consider more expressive constraints: pseudo-Boolean constraints
- Change he conflict analysis procedure to produce pseudo-Boolean constraints
- Using the "cutting planes" proof system?
- Recovering cardinality constraints in practice

Outline of the talk

Motivating example
Definitions and properties
Handling Pseudo-Boolean constraints instead of clauses
Conflict Driven "cutting planes" reasoning
A note about solving Optimization problems
Cardinality detection
On the limits of current PB solvers

Outline

Motivating example

Definitions and properties

Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven "cutting planes" reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers

Linear Pseudo-Boolean constraints (LPB)

$$
\sum_{i=1}^{n} a_{i} x_{i} \otimes k
$$

- boolean variables x_{i} are integers taking their value in $\{0,1\}$

$$
\left(x_{i} \geq 0 \text { and } x_{i} \leq 1\right)
$$

- $\overline{x_{i}}=1-x$
- coefficients a_{i} and degree k are integer-valued constants
- $\otimes \in\{<, \leq,=, \geq,>\}$
with $(<k \leftrightarrow \leq k-1$ and $=k \leftrightarrow \leq k \wedge \geq k)$
Pseudo-Boolean decision problem: satisfying a set of LPB is NP-complete

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

LPB = Concise boolean function representation

- clauses are specific LPB:

$$
\bigvee_{i=1}^{n} I_{i} \equiv \sum_{i=1}^{n} I_{i} \geq 1 \equiv \sum_{i=1}^{n} \bar{l}_{i} \leq n-1
$$

$x_{1} \vee x_{2} \vee x_{3}$ translates into $x_{1}+x_{2}+x_{3} \geq 1$
or $\overline{x_{1}}+\overline{x_{2}}+\overline{x_{3}} \leq 2$

- cardinality constraints at least/at most 2 out of $\left\{x_{1}, x_{2}, x_{3}\right\}$ translate into

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3} \geq 2 \\
& x_{1}+x_{2}+x_{3} \leq 2
\end{aligned}
$$

- Knapsack constraint: $\sum w_{i} \cdot x_{i} \leq W$
- Subset sum constraint: $\sum a_{i} \cdot x_{i}=k$

Linear Pseudo Boolean constraints normalization

Representation used when designing a solver

- remember that $x=1-\bar{x}$
- usual form : \geq inequality and positive constants

$$
\begin{gathered}
-3 x_{1}+4 x_{2}-7 x_{3}+x_{4} \leq-5 \\
\equiv 3 x_{1}-4 x_{2}+7 x_{3}-x_{4} \geq 5 \\
\equiv 3 x_{1}+-4\left(1-\overline{x_{2}}\right)+7 x_{3}+-\left(1-\overline{x_{4}}\right) \geq 5 \\
\equiv 3 x_{1}+4 \overline{x_{2}}+7 x_{3}+\overline{x_{4}} \geq 10
\end{gathered}
$$

- note that

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 1
$$

is represented

$$
\overline{x_{1}}+\overline{x_{2}}+\overline{x_{3}}+\overline{x_{4}}+\overline{x_{5}} \geq 4
$$

Fun facts about PB constraints $1 / 3$

- In a clause or a cardinality constraints, all literals are equivalent

$$
x_{1}+x_{2}+x_{3} \geq 2
$$

can be equally satisfied by a pair of literals

- In a PB constraints, literals with the same coefficients are equivalent

$$
2 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 2
$$

x_{1} and x_{2} are equivalent, so are x_{3} and x_{4}

Fun facts about PB constraints $2 / 3$

- A clause can only propagate 1 literal
- A cardinality constraint can propagate only k literals

$$
x_{1}+x_{2}+x_{3}+\ldots x_{k-1}+x_{k} \geq k
$$

- A PB constraint can propagate between 1 and k literals

$$
4 x_{1}+4 x_{2}+x_{3}+x_{4}+x_{5} \geq 9
$$

x_{1} and x_{2} are necessarily true

Fun facts about PB constraints $3 / 3$

- PB constraints can sometimes be rewritten as a conjunction of simpler constraints

$$
\begin{gathered}
10 x_{1}+4 x_{2}+4 x_{3}+x_{4}+x_{5}+x_{6} \geq 15 \\
\equiv \\
x_{1} \wedge\left(4 x_{2}+4 x_{3}+x_{4}+x_{5}+x_{6} \geq 5\right)
\end{gathered}
$$

- A PB constraint may have irrelevant literals

$$
\begin{gathered}
10 x_{1}+4 x_{2}+4 x_{3}+x_{4}+x_{5}+x_{6} \geq 14 \\
\equiv \\
x_{1} \wedge\left(x_{2} \vee x_{3}\right)
\end{gathered}
$$

The satisfiability of the constraint does not depend on x_{4}, x_{5}, x_{6}

Basic operations on Linear inequalities

$$
\text { addition: } \begin{gathered}
\sum_{i} a_{i} \cdot x_{i} \geq k \\
\sum_{i} a_{i}^{\prime} \cdot x_{i} \geq k^{\prime} \\
\sum_{i}\left(a_{i}+a_{i}^{\prime}\right) \cdot x_{i} \geq k+k^{\prime}
\end{gathered}
$$

linear combination:

$$
\begin{gathered}
\sum_{i} a_{i} \cdot x_{i} \geq k \\
\sum_{i} a_{i}^{\prime} \cdot x_{i} \geq k^{\prime} \\
\sum_{i}\left(\alpha . a_{i}+\alpha^{\prime} \cdot a_{i}^{\prime}\right) \cdot x_{i} \geq \alpha \cdot k+\alpha^{\prime} \cdot k^{\prime} \\
\text { with } \alpha>0 \text { and } \alpha^{\prime}>0
\end{gathered}
$$

$$
\text { division: } \begin{gathered}
\sum_{i} a_{i} \cdot x_{i} \geq k \\
\\
\frac{\alpha>0}{\sum_{i} \frac{a_{i} \cdot x_{i}}{\alpha} \geq \frac{k}{\alpha}}
\end{gathered}
$$

TCS division

$$
\begin{array}{cc}
& \sum_{i} \alpha \cdot a_{i} \cdot x_{i} \geq k \\
\text { TCS division: } & \frac{\alpha>0}{\sum_{i} a_{i} \cdot x_{i} \geq\left\lceil\frac{k}{\alpha}\right\rceil} \\
\text { s division: } & \frac{2 x_{2}+2 x_{3}+2 x_{4} \geq 3}{x_{2}+x_{3}+x_{4} \geq\lceil 3 / 2\rceil} \\
x_{2}+x_{3}+x_{4} \geq 2
\end{array}
$$

ILP division (Chvátal-Gomory cut)

- When the variables x_{i} and degree k are integer
- Removes some non integral part of the cut

$$
\text { ILP division: } \begin{gathered}
\sum_{i} a_{i} \cdot x_{i} \geq k \\
\frac{\alpha>0}{\sum_{i}\left\lceil\frac{a_{i}}{\alpha}\right\rceil \cdot x_{i} \geq\left\lceil\frac{k}{\alpha}\right\rceil}
\end{gathered}
$$

$$
\frac{5 x_{3}+3 x_{4} \geq 5}{\lceil 5 / 5\rceil x_{3}+\lceil 3 / 5\rceil x_{4} \geq\lceil 5 / 5\rceil}\left(x_{3}+x_{4} \geq 1 .\right.
$$

One can always reduce a LPB constraint to a clause!

Clashing linear combination

Also called Gaussian or Fourier-Motzkin elimination

- Apply linear combination between LPB constraints with at least one opposite literal.
- Generalization of resolution [Hoo88]
clashing combination:

$$
\begin{gathered}
\sum_{i} a_{i} \cdot x_{i}+\alpha^{\prime} \sum_{j=1}^{m} y_{j} \geq k \\
\sum_{i} a_{j}^{\prime} \cdot x_{i}+\alpha \sum_{j=1}^{m} \overline{y_{j}} \geq k^{\prime} \\
\sum_{i}\left(\alpha \cdot a_{i}+\alpha^{\prime} \cdot a_{i}^{\prime}\right) \cdot x_{i} \geq \alpha \cdot k+\alpha^{\prime} \cdot k^{\prime}-\alpha \cdot \alpha^{\prime} \cdot m \\
\text { with } \alpha>0 \text { and } \alpha^{\prime}>0
\end{gathered}
$$

$$
\begin{gathered}
x_{1}+x_{2}+3 x_{3}+x_{4} \geq 3 \quad 2 \overline{x_{1}}+2 \overline{x_{2}}+x_{4} \geq 3 \\
\hline 2 x_{1}+2 x_{2}+6 x_{3}+2 x_{4}+2 \overline{x_{1}}+2 \overline{x_{2}}+x_{4} \geq 2 \times 3+3 \\
2 x_{1}+2 x_{2}+6 x_{3}+2 x_{4}+2-2 x_{1}+2-2 x_{2}+x_{4} \geq 9 \\
6 x_{3}+3 x_{4} \geq 5
\end{gathered}
$$

Note that $2 x+2 \bar{x}=2$, not 0 !
Note that the coefficients are growing!

Some remarks about clashing combination

- Clashing combination looks like resolution?

$$
\frac{x_{1}+x_{3}+x_{4} \geq 1 \quad \overline{x_{1}}+x_{2}+x_{5} \geq 1}{x_{2}+x_{3}+x_{4}+x_{5} \geq 1}
$$

- What about common literals?

$$
\frac{x_{1}+x_{2}+x_{3}+x_{4} \geq 1 \quad \overline{x_{1}}+x_{2}+x_{4} \geq 1}{2 x_{2}+x_{3}+2 x_{4} \geq 1}
$$

- With more than one variable?

$$
\frac{x_{1}+x_{2}+x_{3}+x_{4} \geq 1 \quad \overline{x_{1}}+\overline{x_{2}}+x_{4} \geq 1}{x_{3}+2 x_{4} \geq 0}
$$

Saturation

coefficients can be trimmed to the value of the degree

$$
\text { saturation: } \begin{gathered}
\sum_{i} a_{i} \cdot x_{i}+\sum_{j} b_{j} \cdot y_{j} \geq k \\
\sum_{i} a_{i} \cdot x_{i}+\sum_{j} k \cdot y_{j} \geq k \\
\frac{6 x_{3}+3 x_{4} \geq 5}{5 x_{3}+3 x_{4} \geq 5} \\
\frac{2 x_{2}+x_{3}+2 x_{4} \geq 1}{x_{2}+x_{3}+x_{4} \geq 1}
\end{gathered}
$$

Weakening

We can reduce the degree of the constraint by "satisfying" any of its literals

$$
\begin{aligned}
& \text { weakening: } \quad \frac{\sum_{i \neq j} a_{i} \cdot x_{i}+a_{j} \cdot x_{j} \geq k}{\sum_{i \neq j} a_{i} \cdot x_{i} \geq k-a_{j}} \\
& \frac{5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8}{3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 3}
\end{aligned}
$$

Useful for reducing the value of the degree!
[Apply linear combination rule with $\overline{x_{j}} \geq 0$]

Reduction to cardinality

Extract a cardinality constraint from a LPB constraint

$$
\begin{array}{lc}
& \sum_{i=1}^{n} a_{i} \cdot x_{i} \geq k \\
\text { reduce to card: } & \frac{a_{1} \geq a_{2} \geq \ldots a_{n}}{\sum_{i=1}^{n} x_{i} \geq k^{\prime}} \\
& \text { with } \sum_{i=1}^{k^{\prime}-1} a_{i}<k \leq \sum_{i=1}^{k^{\prime}} a_{i}
\end{array}
$$

$$
\frac{5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8}{x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \geq 2}
$$

The various Cutting Planes

- Linear combination + ILP division $=$ Chvátal-Gomory ILP cutting planes
- Addition + TCS division $=$ Proof complexity cutting planes
- Linear clashing combination + saturation = Hooker's generalized resolution cutting planes

Integrating Cutting Planes in a CDCL solver: replace Resolution during Conflict Analysis by Hooker's Cutting Planes

Outline

Motivating example

Definitions and properties

Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven "cutting planes" reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers

Requirements for constraints in a CDCL solver

- Detect falsified state
- Detect propagation of literals
- Provide a "reason" during conflict analysis

Some remarks about clauses

$$
I_{1} \vee I_{2} \vee \ldots \vee I_{n}
$$

- Falsified when all its literals are falsified

$$
I_{1} \vee I_{2} \vee \ldots \vee I_{n}
$$

- Propagates when all but one literals are falsified

$$
I_{1} \vee I_{2} \vee \ldots \vee I_{n}
$$

- Propagates one literal
- Appears at most once as a reason for an assignment

Chaff: 2 watched literals per clause

Some remarks about cardinality constraints

$$
I_{1}+I_{2}+\ldots+I_{n} \geq k
$$

- Falsified when at least $n-k+1$ literals are falsified

$$
I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} \geq 4
$$

Note unassigned literals!

- Propagates when exactly $n-k$ literals are falsified

$$
I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} \geq 4
$$

- Propagates k literals
- Appears at most once as a reason for at most k consecutive assignments.
Extended $k+1$ watched literals per cardinality

Some remarks about LBP constraints

$$
\begin{gathered}
a_{1} \cdot l_{1}+a_{2} \cdot l_{2}+\ldots+a_{n} \cdot I_{n} \geq k \\
A=\sum_{i} a_{i}
\end{gathered}
$$

Slack s: $A-k-\sum_{l_{i} f a l s i f i e d} a_{i}$

- Falsified when $s<0$ (depends on falsified literals)

$$
5 I_{1}+3 I_{2}+2 I_{3}+I_{4}+I_{5}+I_{6} \geq 6
$$

- Propagates remaining literals when $s=0$

$$
5 I_{1}+3 I_{2}+2 I_{3}+I_{4}+I_{5}+I_{6} \geq 6
$$

- Propagates literals x_{i} for which $s<a_{i}$
- May appear several times as a reason for non consecutive assignments
Extended watched literals based on coefficients!

Watched Literals for LPB constraints

Described in Galena [CK03] and BChaff [Par04], may have already existed in PBS or Satzoo.

- General case:

Let $M=\max \left(a_{i}\right)$
NbWatch $=$ minimal number of literals x_{i} such that
$\sum a_{i} \geq k+M$.

- Cardinality constraints:
$M=1$
NbWatch $=k+1$
- Clauses:
$M=1$
$k=1$
$N b W a t c h=2$

Watched literals: consequences

- In LPB constraints, the number of WL is varying during the search.
- In cardinality constraints, the greater the degree, the greater the number of WL.
- Clauses are the best case!
- Big difference for LPB constraint learning

Forced truth values: Implicative and Assertive constraints

- unit clause: a clause that propagates one truth value to be satisfiable
- implicative constraint: a constraint which propagates at least one truth value to be satisfiable.
- a LPB constraint C is implicative iff $\exists a_{i} x_{i} \in C$ such that $\sum_{j \neq i} a_{j}<k$ or $\sum a_{j}-k<a_{i}$.

Forced truth values: Implicative and Assertive constraints

- unit clause: a clause that propagates one truth value to be satisfiable
- implicative constraint: a constraint which propagates at least one truth value to be satisfiable.
- a LPB constraint C is implicative iff $\exists a_{i} x_{i} \in C$ such that $\sum_{j \neq i} a_{j}<k$ or $\sum a_{j}-k<a_{i}$.

Example

$$
4 x_{1}+3 x_{2}+x_{3}+x_{4} \geq 8
$$

propagates x_{1} and x_{2}

- $3+1+1<8$ so x_{1} must be satisfied, same thing on $3 x_{2}+x_{3}+x_{4} \geq 4$.

Forced truth values: Implicative and Assertive constraints

- unit clause: a clause that propagates one truth value to be satisfiable
- implicative constraint: a constraint which propagates at least one truth value to be satisfiable.
- a LPB constraint C is implicative iff $\exists a_{i} x_{i} \in C$ such that $\sum_{j \neq i} a_{j}<k$ or $\sum a_{j}-k<a_{i}$.

Example

$$
4 x_{1}+3 x_{2}+x_{3}+x_{4} \geq 8
$$

propagates x_{1} and x_{2}

- $3+1+1<8$ so x_{1} must be satisfied, same thing on $3 x_{2}+x_{3}+x_{4} \geq 4$.
- One can note that $\sum a_{j}-k=1$ so any literal x_{i} with a coef greater than 1 must be propagated.

Forced truth values: Implicative and Assertive constraints

- unit clause: a clause that propagates one truth value to be satisfiable
- implicative constraint: a constraint which propagates at least one truth value to be satisfiable.
- a LPB constraint C is implicative iff $\exists a_{i} x_{i} \in C$ such that $\sum_{j \neq i} a_{j}<k$ or $\sum a_{j}-k<a_{i}$.

Example

$$
4 x_{1}+3 x_{2}+x_{3}+x_{4} \geq 8
$$

propagates x_{1} and x_{2}

- $3+1+1<8$ so x_{1} must be satisfied, same thing on $3 x_{2}+x_{3}+x_{4} \geq 4$.
- One can note that $\sum a_{j}-k=1$ so any literal x_{i} with a coef greater than 1 must be propagated.
- Rewrite into $x_{1} \wedge x_{2} \wedge\left(x_{3}+x_{4} \geq 1\right)$?

Outline

Motivating example
 Definitions and properties
 Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven "cutting planes" reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers

Problems with the integration of Cutting Planes

- Derived LPB constraint must be redondant (logical consequence) no problem here
- Derived LPB constraint must be falsified at current decision level free for resolution, requires special care for CP
- Derived LPB constraint must be assertive at backtrack level syntactical test for clauses, not for PB constraints

Computing the backtrack level

- Just a max for clauses
- More complicated for LPBC: an LPB constraint may be assertive at different backtrack levels.
- Decision literals are no longer "UIP"!
- Need to backtrack to the first one

Example

Given the decisions $x_{1}, \neg x_{2}, \neg x_{3}$ and the falsified LBP $3 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 5$. Where should I backtrack?

Computing the backtrack level

- Just a max for clauses
- More complicated for LPBC: an LPB constraint may be assertive at different backtrack levels.
- Decision literals are no longer "UIP"!
- Need to backtrack to the first one

Example

Given the decisions $x_{1}, \neg x_{2}, \neg x_{3}$ and the falsified LBP $3 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 5$.
Where should I backtrack?
backtrack to $x_{1}, \neg x_{2}$ to propagate x_{3} and x_{4} ?

Computing the backtrack level

- Just a max for clauses
- More complicated for LPBC: an LPB constraint may be assertive at different backtrack levels.
- Decision literals are no longer "UIP"!
- Need to backtrack to the first one

Example

Given the decisions $x_{1}, \neg x_{2}, \neg x_{3}$ and the falsified LBP $3 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 5$.
Where should I backtrack?
backtrack to $x_{1}, \neg x_{2}$ to propagate x_{3} and x_{4} ?
or to decision level 0 to propagate x_{1} ?

Computing an assertive clause

- Let C be a falsified constraint
- $S=l i t(C)_{>d l}$
- $D=\operatorname{lit}(C)_{=d l}$

1 Pick the reason R for the latest assignment a in C
2 Compute $S=S \cup \operatorname{lit}(R)_{>d l}$ and $D=D \cup \operatorname{lit}(R)_{=d l} \backslash\{a\}$

- Repeat $1-2$ until $|D|=1$

Computing an assertive LPB constraint

1. Let C be a falsified constraint
2. Pick the reason R for the latest assignment a in C
3. compute α and α^{\prime} to remove a from C.
4. Weaken R if needed to ensure that the LPB constraint generated by applying linear combination is falsified (reduction)
5. Apply clashing combination: $C=C C\left(C, R, \alpha, \alpha^{\prime}\right)$
6. Apply saturation
7. Update the slack of the generated constraint
8. Repeat 2-7 until the slack is 0

Use arbitrary precision arithmetic to prevent overflow

Computing an assertive LPB constraint

1. Let C be a falsified constraint
2. Pick the reason R for the latest assignment a in C
3. compute α and α^{\prime} to remove a from C.
4. Weaken R if needed to ensure that the LPB constraint generated by applying linear combination is falsified (reduction)
5. Apply clashing combination: $C=C C\left(C, R, \alpha, \alpha^{\prime}\right)$
6. Apply saturation
7. Update the slack of the generated constraint
8. Repeat 2-7 until the slack is 0

Use arbitrary precision arithmetic to prevent overflow Not needed if reduced to cardinality constraint

Example

$$
\begin{aligned}
& \neg x_{5}^{0}, x_{1}^{0}\left[C_{1}\right], \neg x_{4}^{1}, x_{3}^{1}\left[C_{3}\right], x_{2}^{1}\left[C_{1}\right]
\end{aligned}
$$

$\operatorname{Poss}\left(C_{1}\right)=+2, \operatorname{Poss}\left(C_{2}\right)=-2$
Red. $x_{1}:\left(C_{1}^{\prime}\right) \quad 3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 3$ poss $=+2$
Red. $x_{3}:\left(C_{1}^{\prime \prime}\right) \quad x_{2}+x_{4}+x_{5} \geq 1$ poss $=0$
$\mathrm{CC}\left(C_{2}, 3 \times C_{1}^{\prime \prime}\right)=2 \overline{x 1}^{0}+2{\overline{x_{3}}}^{1}+x_{4}^{1}+2 x_{5}^{0} \geq 2$
Assertive at decision level 0 (x_{3} is propagated to 1).
Would learn $\overline{x_{1}}+x_{4}+x_{5} \geq 1$ with clause learning. Assertive at decision level 0 (x_{4} is propagated to 1).

A brief history of LPB constraints within SAT solvers

[Bar95] DPLL extension to LPB [opbdp]
[Wal97] (and [Pre02, Pre04]) local search for LPB
[MFSO97] B'n'B LPB solver (GRASP)
[WKS01] incremental SAT with LPB (GRASP)
[ARMS02, Sak03] LPB contraints with Chaff/CDCL solver
[pbs, see also satzoo (minisat)]
[Gin02] extended RelSAT to LPB (LPB learning)
[CK03] CDCL with LPB learning
[Par04] describe a generic CDCL solver based on group theory
handling arbitrary boolean gates.
[SS06] CDCL solver able to learn temporary LPB constraints
[pueblo]
[ALS09] Generalization of PBO [WBO/OpenWBO]
[EN18] Specific division rule [RoundingSAT]

A brief history of LPB constraints within SAT solvers

[Bar95] DPLL extension to LPB[opbdp][Wal97] (and [Pre02, Pre04]) local search for LPB[MFSO97] B'n'B LPB solver (GRASP)[bsolo]
[WKS01] incremental SAT with LPB (GRASP) [satire][ARMS02, Sak03] LPB contraints with Chaff/CDCL solver[pbs, see also satzoo (minisat)]
[Gin02] extended RelSAT to LPB (LPB learning)[CK03] CDCL with LPB learning[galena]
[Par04] describe a generic CDCL solver based on group theory
handling arbitrary boolean gates.
[SS06] CDCL solver able to learn temporary LPB constraints[pueblo][ALS09] Generalization of PBO [WBO/OpenWBO]
[EN18] Specific division rule [RoundingSAT]Main interest moved to MAXSAT since a decade,

A brief history of LPB constraints within SAT solvers

[Bar95] DPLL extension to LPB
[Wal97] (and [Pre02, Pre04]) local search for LPB [MFSO97] B'n'B LPB solver (GRASP)
[WKS01] incremental SAT with LPB (GRASP)
[ARMS02, Sak03] LPB contraints with Chaff/CDCL solver
[Gin02] extended RelSAT to LPB (LPB learning)
[CK03] CDCL with LPB learning
[Par04] describe a generic CDCL solver based on group theory handling arbitrary boolean gates.
[SS06] CDCL solver able to learn temporary LPB constraints
[pueblo]
[ALS09] Generalization of PBO [WBO/OpenWBO]
[EN18] Specific division rule [RoundingSAT]
Main interest moved to MAXSAT since a decade, Major work on CNF encoding of cardinality and LBP constraints (Minisat+ effect)

SAT4J Pseudo

- Implements the LPB learning described in PBChaff [Gin02] and Galena[CK03]
- Cardinality learning preferred to LPB learning
- No management of integer overflow
- Solvers no longer developed
- Based on Minisat 1 specification implemented in Java
- Two versions available: resolution based inference or Hooker's generalized resolution "cutting planes" based inference.

LPB constraints case: what can go wrong

Boolean propagation lazy data structure for maintaining an alert value require more bookkeeping than for clauses.
Assertive constraints cannot syntactically be identified.
Linear combination between two conflictual constraints doesn't necessary result in a falsified constraint! Weakening may be needed to obtain a cutting plane.
Coefficient management In some cases, the coefficients of the LPB keep growing.
Consequence: learning PB constraints does slow down the solver! Solutions:

- Reduce learned clauses to Cardinality constraints (Galena, PBChaff)
- Learn both a clause and a PB constraint, then eventually remove the PB constraint (Pueblo).
- Learn clauses (Minisat+, PBS).

Outline

Motivating example

Definitions and properties

Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven "cutting planes" reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers

Optimization using strengthening (linear search)

input : A set of clauses, cardinalities and pseudo-boolean constraints setOfConstraints and an objective function objFct to minimize
output: a model of setOfConstraints, or UNSAT if the problem is unsatisfiable.
answer \leftarrow isSatisfiable (setOfConstraints);
if answer is Unsat then
| return Unsat
end
repeat

```
model }\leftarrow\mathrm{ answer;
    answer }\leftarrow\mathrm{ isSatisfiable (setOfConstraints U
                                    {objFct < objFct (model)});
```

until (answer is Unsat);
return model;

Optimization algorithm

Formula :

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

Objective function

$$
\min : \quad 4 x_{2}+2 x_{3}+x_{5}
$$

Optimization algorithm

Formula :

Model

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

$$
\overline{x_{1}}, x_{2}, \overline{x_{3}}, x_{4}, x_{5}
$$

Objective function

$$
\min : \quad 4 x_{2}+2 x_{3}+x_{5}
$$

Optimization algorithm

Formula :

Model

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

Objective function
Objective function value
min: $\quad 4 x_{2}+2 x_{3}+x_{5}$

Optimization algorithm

Formula :

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

Objective function

$$
\begin{equation*}
\min : 4 x_{2}+2 x_{3}+x_{5} \quad< \tag{5}
\end{equation*}
$$

Optimization algorithm

Formula :

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

Model
$x_{1}, \overline{x_{2}}, x_{3}, \overline{x_{4}}, x_{5}$

Objective function

$$
\min : 4 x_{2}+2 x_{3}+x_{5} \quad<\quad 5
$$

Optimization algorithm

Formula :

Model

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

Objective function
Objective function value
$\min : \quad 4 x_{2}+2 x_{3}+x_{5}$
$<\quad 3<5$

Optimization algorithm

Formula :

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

Objective function

$$
\min : 4 x_{2}+2 x_{3}+x_{5} \quad<\quad 3
$$

Optimization algorithm

Formula :

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

Model
$x_{1}, \overline{x_{2}}, \overline{x_{3}}, x_{4}, x_{5}$

Objective function

$$
\min : 4 x_{2}+2 x_{3}+x_{5} \quad<\quad 3
$$

Optimization algorithm

Formula :

Model

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

$$
x_{1}, \overline{x_{2}}, \overline{x_{3}}, x_{4}, x_{5}
$$

Objective function
Objective function value

$$
\min : 4 x_{2}+2 x_{3}+x_{5} \quad<\quad 1<3
$$

Optimization algorithm

Formula :

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

Objective function

$$
\min : 4 x_{2}+2 x_{3}+x_{5} \quad<\quad 1
$$

Optimization algorithm

Formula :

$$
\left\{\begin{array}{rr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

Objective function

$$
\min : 4 x_{2}+2 x_{3}+x_{5} \quad<\quad 1
$$

Optimization algorithm

Formula :

$$
\left\{\begin{array}{lr}
\left(a_{1}\right) & 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \geq 8 \\
\left(a_{2}\right) & 5 \overline{x_{1}}+3 \overline{x_{2}}+2 \overline{x_{3}}+2 \overline{x_{4}}+\overline{x_{5}} \geq 5 \\
(b) & x_{1}+x_{3}+x_{4} \geq 2
\end{array}\right.
$$

Objective function
$\min : \quad 4 x_{2}+2 x_{3}+x_{5}$
The objective function value 1 is optimal for the formula. $x_{1}, \overline{x_{2}}, \overline{x_{3}}, x_{4}, x_{5}$ is an optimal solution.

Remarks about the optimization procedure

- No need for an initial upper bound!
- Phase selection strategy takes into account the objective function.
- External to the PB solver: can use any PB solver.
- SAT, SAT, SAT, ..., SAT, UNSAT pattern
- SAT answer usually easier to provide than UNSAT one
- In practice: optimality is often hard to prove for the Resolution based PB solver (pigeon hole?).
- Ideally, would like to run the CP PB solver to prove optimality at the end.
- Problem: how to detect that we need to prove optimality?

Remarks about the optimization procedure

- No need for an initial upper bound!
- Phase selection strategy takes into account the objective function.
- External to the PB solver: can use any PB solver.
- SAT, SAT, SAT, ..., SAT, UNSAT pattern
- SAT answer usually easier to provide than UNSAT one
- In practice: optimality is often hard to prove for the Resolution based PB solver (pigeon hole?).
- Ideally, would like to run the CP PB solver to prove optimality at the end.
- Problem: how to detect that we need to prove optimality?
- Nice idea suggested by Olivier Roussel submitted to PB 2010: run the Res and CP PB solvers in paralle!!

Optimization with solvers running in parallel

input : A set of clauses, cardinalities and pseudo-boolean constraints setOfConstraints and an objective function objFct to minimize
output: a model of setOfConstraints, or UNSAT if the problem is unsatisfiable.
answer \leftarrow isSatisfiable (setOfConstraints);
if answer is Unsat then
| return Unsat
end
repeat

```
model }\leftarrow\mathrm{ answer;
    answer }\leftarrow\mathrm{ isSatisfiable (setOfConstraints U
                                    {objFct < objFct (model)});
```

until (answer is Unsat);
return model;

logic-synthesis/normalized-jac3.opb @ PB2010

\% Cutting Planes $1.17 / 0.78$ c \#vars 1731
1.17/0.78 c \#constraints 1254
1.76/1.03 c SATISFIABLE
1.76/1.03 c OPTIMIZING.
$1.76 / 1.03$ ○ 26
$3.40 / 1.91 \circ 25$
$5.93 / 3.41 \circ 24$
$6.97 / 4.33$ ○ 23
$7.49 / 4.88$ ○ 22
$8.44 / 5.72$ ○ 21
$9.00 / 6.27$ ○ 20
$9.62 / 6.87$ ○ 19
10.44/7.61 $\circ 18$
11.54/8.79 ○ 17
13.03/10.13 ○ 16
25.34/22.07 ○ 15
1800.11/1773.42 s SATISFIABLE

\% Resolution
$1.17 / 0.75$ c \#vars 1731
$1.17 / 0.75$ c \#constraints 1254
$1.57 / 0.91$ c SATISFIABLE
$1.57 / 0.91$ с OPTIMIZING...
$1.57 / 0.91$ o 26
$2.55 / 1.42$ o 23
$2.96 / 1.60$ o 22
$3.35 / 1.80$ o 21
$16.34 / 14.32$ o 20
$55.04 / 52.91$ o 19
$766.33 / 763.00$ o 18
$1800.04 / 1795.76$ s SATISFIABLE

logic-synthesis/normalized-jac3.opb @ PB2010

\% Cutting Planes $1.17 / 0.78$ c \#vars 1731
1.17/0.78 c \#constraints 1254
1.76/1.03 c SATISFIABLE
1.76/1.03 c OPTIMIZING...
1.76/1.03 ○ 26
3.40/1.91 ○ 25
5.93/3.41 ○ 24
6.97/4.33 ○ 23
7.49/4.88 ○ 22
8.44/5.72 ○ 21
$9.00 / 6.27$ ○ 20
9.62/6.87 ○ 19
10.44/7.61 ○ 18
11.54/8.79 ○ 17
13.03/10.13 $\circ 16$
25.34/22.07 ○ 15
1800.11/1773.42 s SATISFIABLE

logic-synthesis/normalized-jac3.opb @ PB2010

```
Cutting Planes
1800.11/1773.42 s SATISFIABLE
1800.11/1773.41 c learnt clauses : }261
1800.11/1773.42 c speed (assignments/second) : 226
```

```
Res // CP
305.11/164.68 s OPTIMUM FOUND
305.11/164.68 c learnt clauses : }131
305.11/164.68 c speed (assignments/second) : }392
```


Scatter plots Res // CP vs CP, Resolution

SAT4J PB CuttingPlanes_2.2.0 2010-05-26 versus SAT4J PB RES // CP_2.2.0 2010-05-31
SAT4J PB CuttingPlanes_2.2.0 2010-05-26 CPU time

SAT4J PB Resolution_2.2.0 2010-05-26 versus SAT4J PB RES // CP_2.2.0 2010-05-31
SAT4J PB Resolution_2.2.0 2010-05-26 CPU time

Regarding the idea to run the two solvers in //

- Res // CP globally better than Res or CP solver during PB 2010 in number of benchmarks solved.
- Res // CP twice as slow as Res on many benchmarks.
- Decision problems: solves the union of the benchmarks solved by Res and CP in half the timeout (CPU time taken into account, not wall clock time).
- Optimization problems: "cooperation" of solvers allow to solve new benchmarks!

The Pseudo Boolean evaluations

 http://www.cril.univ-artois.fr/PB16/- Organized by Olivier Roussel and Vasco Manquinho from 2005 to 2012, and 2016
- Uniform input format: OPB files
- Independent assessment of the PB solvers
- Detailed results available for each solver
- Various technologies used since 2006
- WBO category since 2010

Partial results of the PB12 evaluation

	Min- iSat +	Cplex	Clasp	Sat4j Res // CP	Bsolo	Sat4j Res	
Dec.	91	88	97	$\mathbf{1 1 9}$	115	91	UNS
(\#355)	129	104	$\mathbf{1 4 9}$	130	123	140	SAT
Opt S	$\mathbf{2 2}$	21	21	$\mathbf{2 2}$	21	21	UNS
$(\# 657)$	257	$\mathbf{3 5 5}$	260	253	279	257	OPT
Opt B	$\mathbf{2 3}$	-	-	$\mathbf{2 3}$	-	$\mathbf{2 3}$	UNS
$(\# 416)$	15	-	-	$\mathbf{8 0}$	-	74	OPT

See http://www.cril.univ-artois.fr/PB12/results/results.php?idev=67 for details

Partial results of the PB16 evaluation

	Min- iSat+	Open- WBO	Sat4j Res // Cdcl- cp	NaPS		
Dec.	935	1049	1052	$\mathbf{1 0 9 2}$	1023	UNS
$(\# 1783)$	$\mathbf{3 8 4}$	329	315	303	338	SAT
Opt S	76	45	$\mathbf{8 9}$	$\mathbf{8 9}$	85	UNS
$(\# 1600)$	713	781	672	685	$\mathbf{8 0 2}$	OPT
Opt B	$\mathbf{7 0}$	-	$\mathbf{7 0}$	-	69	UNS
(\#1109)	166	-	196	-	$\mathbf{3 0 5}$	OPT

See http://www.cril.univ-artois.fr/PB16/results/ranking.php?idev=81 for details

Outline

Motivating example

Definitions and properties

Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven "cutting planes" reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers

Semantic cardinality detection

Armin Biere, Daniel Le Berre, Emmanuel Lonca, Norbert Manthey: Detecting Cardinality Constraints in CNF. SAT 2014: 285-301

- Theory tells us that Cutting Planes should work on CNF
- Current implementations do not
- Can we find a way to help PB solvers work on CNF?
- Caution: we need a general process, not one dedicated to a given problem or constraint

Cryptography instance: cardinality constraints vs. clauses

- sha1-006.cnf : 478484 clauses
- sha1-006.\{cnf/opb\}:

Threshold	size	count	Threshold	size	count
1	3	17	4	7	50
2	4	321	5	7	36403
2	5	3	5	8	66
3	5	872	6	8	41643
3	6	13	6	9	656
4	6	3248	and 41787 remaining clauses		

- sha1-006.\{cnf/opb\} contains 125079 constraints : reduced by
a factor of 4

PHP: cardinality constraints vs. clauses

PHP: inconsistency proof computation time

- pigeons-100-hole.cnf:
- resolution \rightarrow timeout (900s)
- generalized resolution[Hoo88] \rightarrow timeout (900s)
- pigeons-100-hole.opb:
- resolution \rightarrow timeout (900s)
- generalized resolution[Hoo88] $\rightarrow<1 s$.
- Cardinality constraints allow the use of stronger proof systems

Cardinality constraints vs. clauses

- pros:
- a cardinality constraint may replace an exponential number of clauses or prevent the use of auxiliary variables
- allow to use strong proof systems (generalized resolution)
- cons:
\rightarrow difficult detection : many encoding exist to translate cardinality constraints into CNF
- deriving cardinality constraints using Cutting Planes proof system does not fit well with CDCL architecture

Some known encodings

Short list of known encodings :

- Pairwise encoding [CCT87]
- Nested encoding
- Two product encoding [Che10]
- Sequential encoding [Sin05]
- Commander encoding [FG10]
- Ladder encoding [GN04]
- Adder encoding [ES06]
- Cardinality Networks [ANORC09]
- ...

Syntactic vs. semantic detection

- Syntactic detection:
- need of an ad hoc algorithm for each \{encoding, k \}
- Our semantic detection:
- based on unit propagation
- adapted to any encoding preserving arc-consistency
- may potentially detect constraints that were not known at encoding time
- detection may be altered by auxiliary variables

Semantic detection of AtMost-k constraint

detecting a cardinality constraint in a semantic way:

1. select a clause of size n, and translate it into an AtMost-k of degree $n-1$:

$$
\bigvee_{i=1}^{n} x_{i} \equiv \sum_{i=1}^{n} \neg x_{i} \leq n-1
$$

2. look for literals m_{j} to extend this constraint:

$$
\sum_{i=1}^{n}\left(\neg x_{i}\right)+m_{1}+\ldots+m_{p} \leq n-1
$$

Semantic detection of AtMost-k constraint: example

$$
\begin{aligned}
& \text { formula : } \\
& \neg x_{1} \vee \neg x_{2} \\
& \neg x_{1} \vee \neg x_{4} \\
& x_{4} \vee \neg x_{3} \\
& \neg x_{2} \vee \neg x_{5} \\
& x_{5} \vee \neg x_{3}
\end{aligned}
$$

$$
\text { detection of } \sum_{i=1}^{3} x_{i} \leq 1
$$

Semantic detection of AtMost-k constraint: example

$$
\neg x_{1} \vee \neg x_{2}
$$

formula :
$\neg x_{1} \vee \neg x_{2}$
$\neg x_{1} \vee \neg x_{4}$
$x_{4} \vee \neg x_{3}$
$\neg x_{2} \vee \neg x_{5}$
$x_{5} \vee \neg x_{3}$

$$
\text { detection of } \sum_{i=1}^{3} x_{i} \leq 1
$$

Semantic detection of AtMost-k constraint: example

$$
\begin{aligned}
& \text { formula : } \\
& \neg x_{1} \vee \neg x_{2} \\
& \neg x_{1} \vee \neg x_{4} \\
& x_{4} \vee \neg x_{3} \\
& \neg x_{2} \vee \neg x_{5} \\
& x_{5} \vee \neg x_{3}
\end{aligned}
$$

$$
\begin{gathered}
\neg x_{1} \vee \neg x_{2} \\
\equiv \\
x_{1}+x_{2} \leq 1
\end{gathered}
$$

$$
\text { detection of } \sum_{i=1}^{3} x_{i} \leq 1
$$

Semantic detection of AtMost-k constraint: example

$$
\begin{array}{rr}
& \neg x_{1} \vee \neg x_{2} \\
\text { formula : } & \equiv \\
\neg x_{1} \vee \neg x_{2} & x_{1}+x_{2} \leq 1 \\
\neg x_{1} \vee \neg x_{4} & \\
x_{4} \vee \neg x_{3} & \\
\neg x_{2} \vee \neg x_{5} & \\
x_{5} \vee \neg x_{3} &
\end{array}
$$

$$
\text { detection of } \sum_{i=1}^{3} x_{i} \leq 1
$$

Semantic detection of AtMost-k constraint: example

$$
\begin{aligned}
& \text { formula : } \\
& \neg x_{1} \vee \neg x_{2} \\
& \neg x_{1} \vee \neg x_{4} \\
& x_{4} \vee \neg x_{3} \\
& \neg x_{2} \vee \neg x_{5} \\
& x_{5} \vee \neg x_{3}
\end{aligned}
$$

$$
\begin{gathered}
\neg x_{1} \vee \neg x_{2} \\
\equiv \\
x_{1}+x_{2} \leq 1
\end{gathered}
$$

$$
\operatorname{PU}\left(x_{1}\right)=\left\{x_{1}, \neg x_{2}, \neg x_{3}, \neg x_{4}\right\}
$$

$$
\text { detection of } \sum_{i=1}^{3} x_{i} \leq 1
$$

Semantic detection of AtMost-k constraint: example

$$
\begin{aligned}
& \text { formula : } \\
& \neg x_{1} \vee \neg x_{2} \\
& \neg x_{1} \vee \neg x_{4} \\
& x_{4} \vee \neg x_{3} \\
& \neg x_{2} \vee \neg x_{5} \\
& x_{5} \vee \neg x_{3}
\end{aligned}
$$

$$
\begin{gathered}
\neg x_{1} \vee \neg x_{2} \\
\equiv \\
x_{1}+x_{2} \leq 1 \\
\mathrm{PU}\left(x_{1}\right)=\left\{x_{1}, \neg x_{2}, \neg x_{3}, \neg x_{4} \quad\right\} \\
\operatorname{PU}\left(x_{2}\right)=\left\{\neg x_{1}, \quad x_{2}, \neg x_{3}, \quad \neg x_{5}\right\}
\end{gathered}
$$

$$
\text { detection of } \sum_{i=1}^{3} x_{i} \leq 1
$$

Semantic detection of AtMost-k constraint: example

$$
\neg x_{1} \vee \neg x_{2}
$$

formula :

$$
x_{1}+x_{2} \leq 1
$$

$$
\mathrm{PU}\left(x_{1}\right)=\left\{x_{1}, \neg x_{2}, \neg x_{3}, \neg x_{4}\right\}
$$

$$
\mathrm{PU}\left(x_{2}\right)=\left\{\neg x_{1}, \quad x_{2}, \neg x_{3}, \quad \neg x_{5}\right\}
$$

$$
\gamma=\{
$$

$$
\neg x_{3}
$$

$$
\}
$$

$$
\text { detection of } \sum_{i=1}^{3} x_{i} \leq 1
$$

Semantic detection of AtMost-k constraint: example

$$
\begin{aligned}
& \text { formula : } \\
& \neg x_{1} \vee \neg x_{2} \\
& \neg x_{1} \vee \neg x_{4} \\
& x_{4} \vee \neg x_{3} \\
& \neg x_{2} \vee \neg x_{5} \\
& x_{5} \vee \neg x_{3}
\end{aligned}
$$

$$
\begin{gathered}
\neg x_{1} \vee \neg x_{2} \\
\equiv \\
x_{1}+x_{2} \leq 1 \\
\mathrm{PU}\left(x_{1}\right)=\left\{\begin{array}{c}
\left.x_{1}, \neg x_{2}, \neg x_{3}, \neg x_{4} \quad\right\} \\
\mathrm{PU}\left(x_{2}\right)=\left\{\neg x_{1}, \quad x_{2}, \neg x_{3}, \quad \neg x_{5}\right\} \\
\gamma=\left\{\quad \neg x_{3}\right.
\end{array}\right\} \\
x_{1}+x_{2}+x_{3} \leq 1 \\
\text { detection of } \sum_{i=1}^{3} x_{i} \leq 1
\end{gathered}
$$

Cardinality constraint extension

Cardinality constraint extension:

1. let $\alpha=\sum_{i=1}^{n} x_{i} \leq k$
2. initialization of the propagation set $\gamma=\left\{v_{i}, \neg v_{i} \mid v \in \mathrm{PS}\right\}$
3. for each subset of k literals x_{i}, we compute the unit propagation set δ, and we refine the propagation set:

$$
\gamma \leftarrow \gamma \cap \delta
$$

4. if there exists $m \in \gamma$, then $\alpha=\sum_{i=1}^{n} x_{i}+\neg m \leq k$ and goto 2

Experimental evaluation

- aim of the experiments: check that detected constraints help a generalized resolution based solver
- solvers:
- Lingeling: able to detect pairwise encoding
- Synt.+Sat4jCP, Sem.+Sat4jCP, Sat4jCP w/o preprocessing
- SBSAT: able to detection cardinality constraints via compilation steps
- Intel Xeon@2.66GHz, 32Go RAM, timeouts=900s

Sat4jCP uses Generalized Resolution, not Cutting Planes, i.e. can only derive clauses when applied to clauses. ${ }^{1}$
${ }^{1}$ Thanks to Jakob Nordström 's group for discussions on that subject

Results

Influence of detected constraints for some encodings of PHP:

Preprocessing Solver	\#inst.	Lingeling Lingeling	$\begin{aligned} & \text { Synt.(Riss) } \\ & \text { Sat4jCP } \end{aligned}$	$\begin{aligned} & \text { Sem.(Riss) } \\ & \text { Sat4jCP } \end{aligned}$	$\begin{gathered} \varnothing \\ \text { SBSAT } \end{gathered}$	Sat4jCP
Pairwise	14	14 (3s)	13 (244s)	14 (583s)	6 (0s)	1 (196s)
Binary	14	3 (398s)	2 (554s)	7 (6s)	6 (7s)	2 (645s)
Sequential	14	0 (0s)	14 (50s)	14 (40s)	10 (6s)	1 (37s)
Product	14	0 (0s)	14 (544s)	11 (69s)	6 (25s)	2 (346s)
Commander	14	1 (3s)	7 (0s)	14 (40s)	9 (187s)	1 (684s)
Ladder	14	0 (0s)	11 (505s)	11 (1229s)	12 (26s)	1 (36s)

solved instances (computation time of solved instances)

Results

Influence of detected constraints for some encodings of PHP:

Preprocessing Solver	\#inst.	Lingeling Lingeling	$\begin{aligned} & \hline \text { Synt.(Riss) } \\ & \text { Sat4jCP } \end{aligned}$	$\begin{aligned} & \text { Sem.(Riss) } \\ & \text { Sat4jCP } \end{aligned}$	SBSAT	Sat4jCP
Pairwise	14	14 (3s)	13 (244s)	14 (583s)	6 (0s)	1 (196s)
Binary	14	3 (398s)	2 (554s)	7 (6s)	6 (7s)	2 (645s)
Sequential	14	0 (0s)	14 (50s)	14 (40s)	10 (6s)	1 (37s)
Product	14	0 (0s)	14 (544s)	11 (69s)	6 (25s)	2 (346s)
Commander	14	1 (3s)	7 (0s)	14 (40s)	9 (187s)	1 (684s)
Ladder	14	0 (0s)	11 (505s)	11 (1229s)	12 (26s)	1 (36s)

solved instances (computation time of solved instances)
Lingeling efficient for pairwise encoding only (the best)

Results

Influence of detected constraints for some encodings of PHP:

Preprocessing Solver	\#inst.	Lingeling Lingeling	$\begin{aligned} & \hline \text { Synt.(Riss) } \\ & \text { Sat4jCP } \end{aligned}$	$\begin{aligned} & \hline \text { Sem.(Riss) } \\ & \text { Sat4jCP } \end{aligned}$	$\begin{gathered} \varnothing \\ \text { SBSAT } \end{gathered}$	$\begin{gathered} \varnothing \\ \text { Sat4jCP } \end{gathered}$
Pairwise	14	14 (3s)	13 (244s)	14 (583s)	6 (0s)	1 (196s)
Binary	14	3 (398s)	2 (554s)	7 (6s)	6 (7s)	2 (645s)
Sequential	14	0 (0s)	14 (50s)	14 (40s)	10 (6s)	1 (37s)
Product	14	0 (0s)	14 (544s)	11 (69s)	6 (25s)	2 (346s)
Commander	14	1 (3s)	7 (0s)	14 (40s)	9 (187s)	1 (684s)
Ladder	14	0 (0s)	11 (505s)	11 (1229s)	12 (26s)	1 (36s)

solved instances (computation time of solved instances)
SBSAT efficient for small instances ; best on ladder encoding

Results

Influence of detected constraints for some encodings of PHP:

Preprocessing Solver	\#inst.	Lingeling Lingeling	$\begin{gathered} \hline \text { Synt.(Riss) } \\ \text { Sat4jCP } \end{gathered}$	$\begin{aligned} & \hline \text { Sem.(Riss) } \\ & \text { Sat4jCP } \end{aligned}$	SBSAT	$\begin{gathered} \varnothing \\ \text { Sat } 4 j C P \end{gathered}$
Pairwise	14	14 (3s)	13 (244s)	14 (583s)	6 (0s)	1 (196s)
Binary	14	3 (398s)	2 (554s)	7 (6s)	6 (7s)	2 (645s)
Sequential	14	0 (0s)	14 (50s)	14 (40s)	10 (6s)	1 (37s)
Product	14	0 (0s)	14 (544s)	11 (69s)	6 (25s)	2 (346s)
Commander	14	1 (3s)	7 (0s)	14 (40s)	9 (187s)	1 (684s)
Ladder	14	0 (0s)	11 (505s)	11 (1229s)	12 (26s)	1 (36s)

solved instances (computation time of solved instances)

Sat4jCP bad without preprocessing

Results

Influence of detected constraints for some encodings of PHP:

Preprocessing Solver	\#inst.	Lingeling Lingeling	$\begin{aligned} & \text { Synt.(Riss) } \\ & \text { Sat4jCP } \end{aligned}$	$\begin{aligned} & \text { Sem.(Riss) } \\ & \text { Sat4jCP } \end{aligned}$	SBSAT	Sat4jCP
Pairwise	14	14 (3s)	13 (244s)	14 (583s)	6 (0s)	1 (196s)
Binary	14	3 (398s)	2 (554s)	7 (6s)	6 (7s)	2 (645s)
Sequential	14	0 (0s)	14 (50s)	14 (40s)	10 (6s)	1 (37s)
Product	14	0 (0s)	14 (544s)	11 (69s)	6 (25s)	2 (346s)
Commander	14	1 (3s)	7 (0s)	14 (40s)	9 (187s)	1 (684s)
Ladder	14	0 (0s)	11 (505s)	11 (1229s)	12 (26s)	1 (36s)

solved instances (computation time of solved instances)
Synt.+Sat4jCP very efficient when specific algorithms are implemented ; best on sequential and two-product encodings

Results

Influence of detected constraints for some encodings of PHP:

Preprocessing Solver	\#inst.	Lingeling Lingeling	$\begin{aligned} & \hline \text { Synt.(Riss) } \\ & \text { Sat4jCP } \end{aligned}$	$\begin{gathered} \hline \text { Sem.(Riss) } \\ \text { Sat4jCP } \end{gathered}$	$\begin{gathered} \varnothing \\ \text { SBSAT } \end{gathered}$	$\begin{gathered} \varnothing \\ \text { Sat4jCP } \end{gathered}$
Pairwise	14	14 (3s)	13 (244s)	14 (583s)	6 (0s)	1 (196s)
Binary	14	3 (398s)	2 (554s)	7 (6s)	6 (7s)	2 (645s)
Sequential	14	0 (0s)	14 (50s)	14 (40s)	10 (6s)	1 (37s)
Product	14	0 (0s)	14 (544s)	11 (69s)	6 (25s)	2 (346s)
Comman	14	1 (3s)	7 (0s)	14 (40s)	9 (187s)	1 (684s)
Ladder	14	0 (0s)	11 (505s)	11 (1229s)	12 (26s)	1 (36s)

solved instances (computation time of solved instances)
Sem. + Sat4jCP efficient on most encodings ; best on binary, sequential and commander encodings

Results

Influence of detected constraints for balanced block design instances:

Preprocessing Solver	\#inst	Lingeling Lingeling	Synt.(Riss) Sat4jCP	Sem.(Riss) Sat 4 jCP	SBSAT	$\begin{gathered} \hline \varnothing \\ \text { Sat4jCP } \end{gathered}$
Sgen unsat	13	0 (0s)	13 (0s)	13 (0s)	9 (614s)	4 (126s)
Fixed bandwidth	23	2 (341s)	23 (0s)	23 (0s)	23 (1s)	13 (1800s)
Rand. orderings	68	16 (897s)	168 (7s)	168 (8s)	99 (2798s)	69 (3541s)
Rand. 4-reg.	126	6 (1626s)	126 (4s)	126 (5s)	84 (2172s)	49 (3754s)

solved instances (computation time of solved instances)

Further results...

- "crossed" constraints: Sudoku grid
- Sudoku 9x9: syntactic preprocessing detects 300/324 constraints, semantic one detects 324/324 constraints
- Sudoku 16x16: syntactic preprocessing detects 980/1024 constraints, semantic one detects 1024/1024 constraints
- Challenge benchmark of [VS10] (clasp unable to solve within 24h): solved within a second thanks to semantic preprocessing (AtMost-3 constraints inside)

Outline

Motivating example

Definitions and properties

Handling Pseudo-Boolean constraints instead of clauses

Conflict Driven "cutting planes" reasoning

A note about solving Optimization problems

Cardinality detection

On the limits of current PB solvers

A Conflict Analysis with Generalized Resolution

Consider the following constraints

$$
\begin{aligned}
& \chi_{1}: \bar{a}+\bar{b}+f \geq 2 \\
& \chi_{2}: 3 \bar{x}+a+b+d+e \geq 4 \\
& \chi_{3}: 4 a+2 b+2 c+x \geq 5
\end{aligned}
$$

A Conflict Analysis with Generalized Resolution

Consider the following constraints
$\chi_{1}: \bar{a}+\bar{b}+f \geq 2$
$\chi_{2}: 3 \bar{x}+a+b+d+e \geq 4$
$f=0 @ 1$.
$\chi_{3}: 4 a+2 b+2 c+x \geq 5$

A Conflict Analysis with Generalized Resolution

Consider the following constraints

A Conflict Analysis with Generalized Resolution

Consider the following constraints

$$
\begin{aligned}
& \chi_{1}: \bar{a}+\bar{b}+f \geq 2 \\
& \chi_{2}: 3 \bar{x}+a+b+d+e \geq 4 \\
& \chi_{3}: 4 a+2 b+2 c+x \geq 5
\end{aligned}
$$

A Conflict Analysis with Generalized Resolution

Consider the following constraints

$$
\begin{aligned}
& \chi_{1}: \bar{a}+\bar{b}+f \geq 2 \\
& \chi_{2}: 3 \bar{x}+a+b+d+e \geq 4 \\
& \chi_{3}: 4 a+2 b+2 c+x \geq 5
\end{aligned}
$$

We have falsified χ_{3} !

A Conflict Analysis with Generalized Resolution

Consider the following constraints

$$
\begin{aligned}
& \chi_{1}: \bar{a}+\bar{b}+f \geq 2 \\
& \chi_{2}: 3 \bar{x}+a+b+d+e \geq 4 \\
& \chi_{3}: 4 a+2 b+2 c+x \geq 5
\end{aligned}
$$

We have falsified χ_{3} ! This conflict is analyzed by resolving χ_{3} against χ_{2} which is the reason for \bar{x}

$$
\frac{\chi_{3} \quad \chi_{2}}{13 a+7 b+6 c+d+e \geq 16}
$$

A Conflict Analysis with Generalized Resolution

Consider the following constraints

$$
f=0 @ 1
$$

We have falsified χ_{3} ! This conflict is analyzed by resolving χ_{3} against χ_{2} which is the reason for \bar{x}

$$
\frac{\chi_{3} \quad \chi_{2}}{13 a+7 b+6 c+d+e \geq 16}
$$

This constraint is learned because it propagates a to 1 at level 0

A Problem with the Learned Constraint?

The constraint learned after conflict analysis is

$$
13 a+7 b+6 c+d+e \geq 16
$$

A Problem with the Learned Constraint?

The constraint learned after conflict analysis is

$$
13 a+7 b+6 c+d+e \geq 16
$$

Let us have a close look at this constraint...

A Problem with the Learned Constraint?

The constraint learned after conflict analysis is

$$
13 a+7 b+6 c+d+e \geq 16
$$

Let us have a close look at this constraint...

A Problem with the Learned Constraint?

The constraint learned after conflict analysis is

$$
13 a+7 b+6 c+d+e \geq 16
$$

Let us have a close look at this constraint... Literals d and e have no effect on the constraint: they are irrelevant!

A Problem with the Learned Constraint?

The constraint learned after conflict analysis is

$$
13 a+7 b+6 c+d+e \geq 16
$$

Let us have a close look at this constraint... Literals d and e have no effect on the constraint: they are irrelevant!
In particular, this means that removing these literals from the constraint preserves equivalence

$$
13 a+7 b+6 c \geq 16
$$

A Problem with the Learned Constraint?

The constraint learned after conflict analysis is

$$
13 a+7 b+6 c+d+e \geq 16
$$

Let us have a close look at this constraint... Literals d and e have no effect on the constraint: they are irrelevant!
In particular, this means that removing these literals from the constraint preserves equivalence

$$
13 a+7 b+6 c \geq 14
$$

Irrelevant Literals in Practice (in Sat4j)

- Number of irrelevant literals in Sat4j-CP's first 5,000 learned constraints
- Experiments conducted on the 777 decision benchmarks from PB'16
- Sat4j as an example of Generalized-Resolution-based solver

RoundingSat's Approach [Elffers and Nordström, 2018]

RoundingSat uses a different approach, which mainly consists in using the division rule instead of saturation

$$
\frac{\sum_{i=1}^{n} a_{i} l_{i} \geq d \quad \alpha>0}{\sum_{i=1}^{n}\left\lceil\frac{\left.a_{i}\right\rceil}{\alpha} l_{i} \geq\left\lceil\frac{d}{\alpha}\right\rceil\right.} \text { (division) }
$$

A Conflict Analysis in RoundingSat

Consider the following constraints:

$$
\begin{aligned}
& \chi_{1}: 2 \bar{c}+2 \bar{d}+b+\bar{e} \geq 4 \\
& \chi_{2}: 3 a+3 b+c+d+e \geq 4 \\
& \chi_{3}: 2 \bar{a}+b+e \geq 2
\end{aligned}
$$

A Conflict Analysis in RoundingSat

Consider the following constraints:

$$
\begin{array}{l|}
\chi_{1}: 2 \bar{c}+2 \bar{d}+b+\bar{e} \geq 4 \\
\chi_{2}: 3 a+3 b+c+d+e \geq 4 \\
\chi_{3}: 2 \bar{a}+b+e \geq 2
\end{array}
$$

A Conflict Analysis in RoundingSat

Consider the following constraints:

$$
\begin{aligned}
& \chi_{1}: 2 \bar{c}+2 \bar{d}+b+\bar{e} \geq 4 \\
& \chi_{2}: 3 a+3 b+c+d+e \geq 4 \\
& \chi_{3}: 2 \bar{a}+b+e \geq 2
\end{aligned}
$$

A Conflict Analysis in RoundingSat

Consider the following constraints:

$$
\begin{aligned}
& e=1 @ 1 \cdot c=0 @ 1 \\
& b=0 @ 2 \cdot
\end{aligned}
$$

A Conflict Analysis in RoundingSat

Consider the following constraints:

$$
\begin{aligned}
& e=1 @ 1 \cdot c=0 @ 1 \\
& b=0 @ 2 \cdot \xrightarrow[\chi_{2}]{\chi_{1}} d=0 @ 1 \\
& a=1 @ 2
\end{aligned}
$$

A Conflict Analysis in RoundingSat

Consider the following constraints:

$$
\begin{aligned}
& \chi_{1} \cdot c=0 @ 1 \\
& b=0 @ 2 \cdot d=0 @ 1 \\
& \chi_{2} \\
& \chi_{1} \\
& e
\end{aligned}
$$

We have falsified χ_{3} !

A Conflict Analysis in RoundingSat

Consider the following constraints:

$$
\begin{aligned}
& \chi_{1} \cdot c=0 @ 1 \\
& b=0 @ 2 \cdot d=0 @ 1 \\
& \chi_{2} \\
& \chi_{1} \\
& \\
& \hline
\end{aligned}
$$

We have falsified χ_{3} ! Before applying clashing addition, χ_{2} is weakened on e and divided by 3

$$
\frac{\chi_{2}}{\frac{3 a+3 b+c+d \geq 3}{a+b+c+d \geq 1}}
$$

A Conflict Analysis in RoundingSat

Consider the following constraints:

$$
\begin{aligned}
& \chi_{1} \cdot c=0 @ 1 \\
& b=0 @ 2 \cdot d=0 @ 1 \\
& \chi_{2} \\
& \chi_{1} \\
& \\
& \hline
\end{aligned}
$$

We have falsified χ_{3} ! Before applying clashing addition, χ_{2} is weakened on e and divided by 3

$$
\frac{\chi_{2}}{\frac{3 a+3 b+c+d \geq 3}{a+b+c+d \geq 1}}
$$

Observe how c and d become irrelevant, and then relevant again, and how they prevent the inference of the stronger constraint

$$
a+b \geq 1
$$

Irrelevant Literals in Practice (in RoundingSat)

- Number of irrelevant literals in RoudingSat's first 100,000 weakened constraints
- Experiments conducted on the 777 decision benchmarks from PB'16

Why are Irrelevant Literals an Issue?

Irrelevant literals make coefficients bigger than necessary:
$17 a+10 b+10 c+d+e \geq 17$

Why are Irrelevant Literals an Issue?

Irrelevant literals make coefficients bigger than necessary:

$$
17 a+10 b+10 c+d+e \geq 17 \equiv 17 a+10 b+10 c \geq 15
$$

Why are Irrelevant Literals an Issue?

Irrelevant literals make coefficients bigger than necessary:

$$
\begin{aligned}
17 a+10 b+10 c+d+e \geq 17 & \equiv 17 a+10 b+10 c \geq 15 \\
& \equiv 15 a+10 b+10 c \geq 15
\end{aligned}
$$

Why are Irrelevant Literals an Issue?

Irrelevant literals make coefficients bigger than necessary:

$$
\begin{array}{rlr}
17 a+10 b+10 c+d+e \geq 17 & \equiv \quad 17 a+10 b+10 c \geq 15 \\
& \equiv 15 a+10 b+10 c \geq 15 \\
& \equiv & 3 a+2 b+2 c \geq 3
\end{array}
$$

Why are Irrelevant Literals an Issue?

Irrelevant literals make coefficients bigger than necessary:

$$
\begin{array}{rlr}
17 a+10 b+10 c+d+e \geq 17 & \equiv \quad 17 a+10 b+10 c \geq 15 \\
& \equiv 15 a+10 b+10 c \geq 15 \\
& \equiv & 3 a+2 b+2 c \geq 3
\end{array}
$$

Applying generalized resolution is harder when coefficients are big due to the need of arbitrary precision

Why are Irrelevant Literals an Issue?

Irrelevant literals make coefficients bigger than necessary:

$$
\begin{array}{rlr}
17 a+10 b+10 c+d+e \geq 17 & \equiv \quad 17 a+10 b+10 c \geq 15 \\
& \equiv 15 a+10 b+10 c \geq 15 \\
& \equiv & 3 a+2 b+2 c \geq 3
\end{array}
$$

Applying generalized resolution is harder when coefficients are big due to the need of arbitrary precision

Irrelevant literals hide cardinality constraints:

$$
3 a+3 b+3 c+3 d+e+f \geq 6
$$

Why are Irrelevant Literals an Issue?

Irrelevant literals make coefficients bigger than necessary:

$$
\begin{array}{rlr}
17 a+10 b+10 c+d+e \geq 17 & \equiv \quad 17 a+10 b+10 c \geq 15 \\
& \equiv 15 a+10 b+10 c \geq 15 \\
& \equiv & 3 a+2 b+2 c \geq 3
\end{array}
$$

Applying generalized resolution is harder when coefficients are big due to the need of arbitrary precision

Irrelevant literals hide cardinality constraints:

$$
3 a+3 b+3 c+3 d+e+f \geq 6 \equiv 3 a+3 b+3 c+3 d \geq 4
$$

Why are Irrelevant Literals an Issue?

Irrelevant literals make coefficients bigger than necessary:

$$
\begin{array}{rlr}
17 a+10 b+10 c+d+e \geq 17 & \equiv \quad 17 a+10 b+10 c \geq 15 \\
& \equiv & 15 a+10 b+10 c \geq 15 \\
& \equiv & 3 a+2 b+2 c \geq 3
\end{array}
$$

Applying generalized resolution is harder when coefficients are big due to the need of arbitrary precision

Irrelevant literals hide cardinality constraints:

$$
\begin{array}{rlrl}
3 a+3 b+3 c+3 d+e+f \geq 6 & \equiv & 3 a+3 b+3 c+3 d & \geq 4 \\
& \equiv & a+b+c+d \geq 2
\end{array}
$$

Why are Irrelevant Literals an Issue?

Irrelevant literals make coefficients bigger than necessary:

$$
\begin{array}{rlr}
17 a+10 b+10 c+d+e \geq 17 & \equiv \quad 17 a+10 b+10 c \geq 15 \\
& \equiv & 15 a+10 b+10 c \geq 15 \\
& \equiv & 3 a+2 b+2 c \geq 3
\end{array}
$$

Applying generalized resolution is harder when coefficients are big due to the need of arbitrary precision

Irrelevant literals hide cardinality constraints:

$$
\begin{array}{rlrl}
3 a+3 b+3 c+3 d+e+f \geq 6 & \equiv & 3 a+3 b+3 c+3 d & \geq 4 \\
& \equiv & a+b+c+d \geq 2
\end{array}
$$

Efficient data structures implemented in PB solvers cannot be used when cardinality constraints are hidden

Conclusion

- PB constraint represent concisely some Boolean functions
- It is possible to introduce some kind of cutting planes reasoning in CDCL solvers, driven by conflict analysis
- Solves PHP instances expressed by cardinalities (not CNF)
- Semantic cardinality detection can help when input is CNF
- But in practice learning LPB often slows down the solver
- Last decade focussed on encoding those constraints into CNF
- Recent work toward new proof systems, cardinality detection (Jakob Nordstrom's group)
- None of existing rules prevent irrelevant literals production

Albert Atserias，Johannes Klaus Fichte，and Marc Thurley． Clause－learning algorithms with many restarts and bounded－width resolution．
J．Artif．Intell．Res．（JAIR），40：353－373， 2011.
嗇 Carlos Ansótegui，Jose Larrubia，Chu Min Li，and Felip Manyà．

Exploiting multivalued knowledge in variable selection heuristics for sat solvers．
Ann．Math．Artif．Intell．，49（1－4）：191－205， 2007.
嗇 Josep Argelich，Inês Lynce，and João P．Marques Silva．
On solving boolean multilevel optimization problem．
In Proc．of IJCAI＇09，pages 393－398， 2009.
围 Roberto Asín，Robert Nieuwenhuis，Albert Oliveras，and Enric Rodríguez－Carbonell．
Cardinality networks and their applications．

In Oliver Kullmann，editor，SAT，volume 5584 of Lecture Notes in Computer Science，pages 167－180．Springer， 2009.
囯 Carlos José Ansótegui．
Complete SAT solvers for Many－Valued CNF Formulas．
PhD thesis，University of Lleida， 2004.
围 F．Aloul，A．Ramani，I．Markov，and K．Sakallah．
Generic ILP versus Specialized 0－1 ILP：an update．
In Proceedings of ICCAD＇02，pages 450－457， 2002.
圊 Peter Barth．
A Davis－Putnam based enumeration algorithm for linear pseudo－Boolean optimization．
Technical Report MPI－I－95－2－003，Max－Plank－Institut fur Informatik，Saarbrücken， 1995.

國 W．Cook，C．R．Coullard，and Gy．Turán．
On the complexity of cutting－plane proofs．

Discrete Applied Mathematics, 18(1):25-38, 1987.
R Jing-Chao Chen.
A new sat encoding of the at-most-one constraint.
In In Proc. of the Tenth Int. Workshop of Constraint
Modelling and Reformulation, 2010.
固 Donald Chai and Andreas Kuehlmann.
A fast pseudo-boolean constraint solver.
In ACM/IEEE Design Automation Conference (DAC'03), pages 830-835, Anaheim, CA, 2003.

围 Jan Elffers and Jakob Nordström.
Divide and conquer: Towards faster pseudo-boolean solving. In Proc. of IJCAI'18, pages 1291-1299, 2018.

Niklas Eén and Niklas Sörensson.
Translating pseudo-boolean constraints into sat.
JSAT, 2(1-4):1-26, 2006.

R Alan M．Frisch and Paul A．Giannaros．
Sat encodings of the at－most－k constraint：Some old，some new，some fast，some slow．
In Proceedings of the The 9th International Workshop on
Constraint Modelling and Reformulation（ModRef 2010）， 2010.
图 Heidi E．Dixon Matthew L．Ginsberg．
Inference methods for a pseudo－boolean satisfiability solver．
In Proceedings of The Eighteenth National Conference on
Artificial Intelligence（AAAI－2002），pages 635－640， 2002.
围 Ian P Gent and Peter Nightingale．
A new encoding of alldifferent into sat．
Proc．3rd International Workshop on Modelling and
Reformulating Constraint Satisfaction Problems，pages
95－110， 2004.
圊 J．N．Hooker．

Generalized resolution and cutting planes．
Ann．Oper．Res．，12（1－4）：217－239， 1988.
嗇 Vasco M．Manquinho，Paulo F．Flores，João P．Marques Silva， and Arlindo L．Oliveira．
Prime implicant computation using satisfiability algorithms．
In ICTAI，pages 232－239， 1997.
冨 Heidi E．Dixon Matthew L．Ginsberg Andrew J．Parkes．
Generalizing boolean satisfiability i：Background and survey of existing work．
In Journal of Artificial Intelligence Research 21， 2004.
R Knot Pipatsrisawat and Adnan Darwiche．
On the power of clause－learning sat solvers as resolution engines．
Artif．Intell．，175（2）：512－525， 2011.
围 S．Prestwich．

Randomised backtracking for linear pseudo-boolean constraint problems.
In Proceedings of Fourth International Workshop on Integration of AI and OR techniques in Constraint
Programming for Combinatorial Optimisation Problems (CP-AI-OR'2002), pages 7-20, 2002.

國 S. Prestwich.
Incomplete dynamic backtracking for linear pseudo-boolean problems: Hybrid optimization techniques.
Annals of Operations Research, 130(1-4):57-73, August 2004.
围 Olivier Roussel and Vasco M. Manquinho.
Pseudo-boolean and cardinality constraints.
In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages 695-733. IOS Press, 2009.

雷 Fadi A．Aloul Arathi Ramani Igor L．Markov Karem A． Sakallah．
Symmetry－breaking for pseudo－boolean formulas．
In International Workshop on Symmetry on Constraint
Satisfaction Problems（SymCon），pages 1－12，County Cork， Ireland， 2003.

國 Carsten Sinz．
Towards an optimal cnf encoding of boolean cardinality constraints．
In Peter van Beek，editor，CP，volume 3709 of Lecture Notes
in Computer Science，pages 827－831．Springer， 2005.
國 Hossein M．Sheini and Karem A．Sakallah．
Pueblo：A Hybrid Pseudo－Boolean SAT Solver．
Journal on Satisfiability，Boolean Modeling and Computation （JSAT），2：165－182， 2006.

Allen Van Gelder and Ivor Spence.
Zero-one designs produce small hard sat instances.
In Ofer Strichman and Stefan Szeider, editors, SAT, volume 6175 of Lecture Notes in Computer Science, pages 388-397. Springer, 2010.

直 J. P. Walser.
Solving Linear Pseudo-Boolean Constraint Problems with Local Search.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), pages 269-274, 1997.

嗇 Jesse Whittemore, Joonyoung Kim, and Karem A. Sakallah. Satire: A new incremental satisfiability engine.
In DAC, pages 542-545. ACM, 2001.

